3 resultados para Automatic water level recorder (AWLR)
em Aston University Research Archive
Resumo:
A fiber optic free water in fuel (WIF) sensor is proposed by utilizing a long period fiber grating (LPFG). The existence of free water in fuel is indicated by the appearance of a characteristic loss band. The free water level in fuel can be determined by measuring the transmissions of two characteristic loss bands.
Resumo:
To reveal the moisture migration mechanism of the unsaturated red clays, which are sensitive to water content change and widely distributed in South China, and then rationally use them as a filling material for highway embankments, a method to measure the water content of red clay cylinders using X-ray computed tomography (CT) was proposed and verified. Then, studies on the moisture migrations in the red clays under the rainfall and ground water level were performed at different degrees of compaction. The results show that the relationship between dry density, water content, and CT value determined from X-ray CT tests can be used to nondestructively measure the water content of red clay cylinders at different migration time, which avoids the error reduced by the sample-to-sample variation. The rainfall, ground water level, and degree of compaction are factors that can significantly affect the moisture migration distance and migration rate. Some techniques, such as lowering groundwater table and increasing degree of compaction of the red clays, can be used to prevent or delay the moisture migration in highway embankments filled with red clays.
Resumo:
A fiber optic free water in fuel (WIF) sensor is proposed by utilizing a long period fiber grating (LPFG). The existence of free water in fuel is indicated by the appearance of a characteristic loss band. The free water level in fuel can be determined by measuring the transmissions of two characteristic loss bands.