2 resultados para Automatic Query Refinement

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Geometric information relating to most engineering products is available in the form of orthographic drawings or 2D data files. For many recent computer based applications, such as Computer Integrated Manufacturing (CIM), these data are required in the form of a sophisticated model based on Constructive Solid Geometry (CSG) concepts. A recent novel technique in this area transfers 2D engineering drawings directly into a 3D solid model called `the first approximation'. In many cases, however, this does not represent the real object. In this thesis, a new method is proposed and developed to enhance this model. This method uses the notion of expanding an object in terms of other solid objects, which are either primitive or first approximation models. To achieve this goal, in addition to the prepared subroutine to calculate the first approximation model of input data, two other wireframe models are found for extraction of sub-objects. One is the wireframe representation on input, and the other is the wireframe of the first approximation model. A new fast method is developed for the latter special case wireframe, which is named the `first approximation wireframe model'. This method avoids the use of a solid modeller. Detailed descriptions of algorithms and implementation procedures are given. In these techniques utilisation of dashed line information is also considered in improving the model. Different practical examples are given to illustrate the functioning of the program. Finally, a recursive method is employed to automatically modify the output model towards the real object. Some suggestions for further work are made to increase the domain of objects covered, and provide a commercially usable package. It is concluded that the current method promises the production of accurate models for a large class of objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis addressed the problem of risk analysis in mental healthcare, with respect to the GRiST project at Aston University. That project provides a risk-screening tool based on the knowledge of 46 experts, captured as mind maps that describe relationships between risks and patterns of behavioural cues. Mind mapping, though, fails to impose control over content, and is not considered to formally represent knowledge. In contrast, this thesis treated GRiSTs mind maps as a rich knowledge base in need of refinement; that process drew on existing techniques for designing databases and knowledge bases. Identifying well-defined mind map concepts, though, was hindered by spelling mistakes, and by ambiguity and lack of coverage in the tools used for researching words. A novel use of the Edit Distance overcame those problems, by assessing similarities between mind map texts, and between spelling mistakes and suggested corrections. That algorithm further identified stems, the shortest text string found in related word-forms. As opposed to existing approaches’ reliance on built-in linguistic knowledge, this thesis devised a novel, more flexible text-based technique. An additional tool, Correspondence Analysis, found patterns in word usage that allowed machines to determine likely intended meanings for ambiguous words. Correspondence Analysis further produced clusters of related concepts, which in turn drove the automatic generation of novel mind maps. Such maps underpinned adjuncts to the mind mapping software used by GRiST; one such new facility generated novel mind maps, to reflect the collected expert knowledge on any specified concept. Mind maps from GRiST are stored as XML, which suggested storing them in an XML database. In fact, the entire approach here is ”XML-centric”, in that all stages rely on XML as far as possible. A XML-based query language allows user to retrieve information from the mind map knowledge base. The approach, it was concluded, will prove valuable to mind mapping in general, and to detecting patterns in any type of digital information.