2 resultados para Authorship Studies
em Aston University Research Archive
Resumo:
This research focuses on Native Language Identification (NLID), and in particular, on the linguistic identifiers of L1 Persian speakers writing in English. This project comprises three sub-studies; the first study devises a coding system to account for interlingual features present in a corpus of L1 Persian speakers blogging in English, and a corpus of L1 English blogs. Study One then demonstrates that it is possible to use interlingual identifiers to distinguish authorship by L1 Persian speakers. Study Two examines the coding system in relation to the L1 Persian corpus and a corpus of L1 Azeri and L1 Pashto speakers. The findings of this section indicate that the NLID method and features designed are able to discriminate between L1 influences from different languages. Study Three focuses on elicited data, in which participants were tasked with disguising their language to appear as L1 Persian speakers writing in English. This study indicated that there was a significant difference between the features in the L1 Persian corpus, and the corpus of disguise texts. The findings of this research indicate that NLID and the coding system devised have a very strong potential to aid forensic authorship analysis in investigative situations. Unlike existing research, this project focuses predominantly on blogs, as opposed to student data, making the findings more appropriate to forensic casework data.
Resumo:
The basic assumption of quantitative authorship attribution is that the author of a text can be selected from a set of possible authors by comparing the values of textual measurements in that text to their corresponding values in each possible author's writing sample. Over the past three centuries, many types of textual measurements have been proposed, but never before have the majority of these measurements been tested on the same dataset. A large-scale comparison of textual measurements is crucial if current techniques are to be used effectively and if new and more powerful techniques are to be developed. This article presents the results of a comparison of thirty-nine different types of textual measurements commonly used in attribution studies, in order to determine which are the best indicators of authorship. Based on the results of these tests, a more accurate approach to quantitative authorship attribution is proposed, which involves the analysis of many different textual measurements.