14 resultados para Auditory-visual Interaction

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: It is well established that phonological awareness, print knowledge and rapid naming predict later reading difficulties. However, additional auditory, visual and motor difficulties have also been observed in dyslexic children. It is examined to what extent these difficulties can be used to predict later literacy difficulties. Method: An unselected sample of 267 children at school entry completed a wide battery of tasks associated with dyslexia. Their reading was tested 2, 3 and 4 years later and poor readers were identified (n = 42). Logistic regression and multiple case study approaches were used to examine the predictive validity of different tasks. Results: As expected, print knowledge, verbal short-term memory, phonological awareness and rapid naming were good predictors of later poor reading. Deficits in visual search and in auditory processing were also present in a large minority of the poor readers. Almost all poor readers showed deficits in at least one area at school entry, but there was no single deficit that characterised the majority of poor readers. Conclusions: Results are in line with Pennington’s (2006) multiple deficits view of dyslexia. They indicate that the causes of poor reading outcome are multiple, interacting and probabilistic, rather than deterministic. Keywords: Dyslexia; educational attainment; longitudinal studies; prediction; phonological processing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motor timing tasks have been employed in studies of neurodevelopmental disorders such as developmental dyslexia and ADHD, where they provide an index of temporal processing ability. Investigations of these disorders have used different stimulus parameters within the motor timing tasks which are likely to affect performance measures. Here we assessed the effect of auditory and visual pacing stimuli on synchronised motor timing performance and its relationship with cognitive and behavioural predictors that are commonly used in the diagnosis of these highly prevalent developmental disorders. Twenty- one children (mean age 9.6 years) completed a finger tapping task in two stimulus conditions, together with additional psychometric measures. As anticipated, synchronisation to the beat (ISI 329 ms) was less accurate in the visually paced condition. Decomposition of timing variance indicated that this effect resulted from differences in the way that visual and auditory paced tasks are processed by central timekeeping and associated peripheral implementation systems. The ability to utilise an efficient processing strategy on the visual task correlated with both reading and sustained attention skills. Dissociations between these patterns of relationship across task modality suggest that not all timing tasks are equivalent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have suggested separate channels for detection of first-order luminance modulations (LM) and second-order modulations of the local amplitude (AM) of a texture. Mixtures of LM and AM with different phase relationships appear very different: in-phase compounds (LM + AM) look like 3-D corrugated surfaces, while out-of-phase compounds (LM - AM) appear flat and/or transparent. This difference may arise because the in-phase compounds are consistent with multiplicative shading, while the out-of-phase compounds are not. We investigated the role of these modulation components in surface depth perception. We used a textured background with thin bars formed by local changes in luminance and/or texture amplitude. These stimuli appear as embossed surfaces with wide and narrow regions. Keeping the AM modulation depth fixed at a suprathreshold level, we determined the amount of luminance contrast required for observers to correctly indicate the width (narrow or wide) of 'raised' regions in the display. Performance (compared to the LM-only case) was facilitated by the presence of AM, but, unexpectedly, performance for LM - AM was as good as for LM + AM. Thus, these results suggest that there is an interaction between first-order and second-order mechanisms during depth perception based on shading cues, but the phase dependence is not yet understood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evidence that cochlear implant listeners routinely experience stream segregation is limited and equivocal. Streaming in these listeners was explored using tone sequences matched to the center frequencies of the implant’s 22 electrodes. Experiment 1 measured temporal discrimination for short (ABA triplet) and longer (12 AB cycles) sequences (tone/silence durations = 60/40 ms). Tone A stimulated electrode 11; tone B stimulated one of 14 electrodes. On each trial, one sequence remained isochronous, and tone B was delayed in the other; listeners had to identify the anisochronous interval. The delay was introduced in the second half of the longer sequences. Prior build-up of streaming should cause thresholds to rise more steeply with increasing electrode separation, but no interaction with sequence length was found. Experiment 2 required listeners to identify which of two target sequences was present when interleaved with distractors (tone/silence durations = 120/80 ms). Accuracy was high for isolated targets, but most listeners performed near chance when loudness-matched distractors were added, even when remote from the target. Only a substantial reduction in distractor level improved performance, and this effect did not interact with target-distractor separation. These results indicate that implantees often do not achieve stream segregation, even in relatively unchallenging tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes a series of experiments investigating both sequential and concurrent auditory grouping in implant listeners. Some grouping cues used by normal-hearing listeners should also be available to implant listeners, while others (e.g. fundamental frequency) are unlikely to be useful. As poor spectral resolution may also limit implant listeners’ performance, the spread of excitation in the cochlea was assessed using Neural Response Telemetry (NRT) and the results were related to those of the perceptual tasks. Experiment 1 evaluated sequential segregation of alternating tone sequences; no effect of rate or evidence of perceptual ambiguity was found, suggesting that automatic stream segregation had not occurred. Experiment 2 was an electrode pitch-ranking task; some relationship was found between pitch-ranking judgements (especially confidence scores) and reported segregation. Experiment 3 used a temporal discrimination task; this also failed to provide evidence of automatic stream segregation, because no interaction was found between the effects of sequence length and electrode separation. Experiment 4 explored schema-based grouping using interleaved melody discrimination; listeners were not able to segregate targets and distractors based on pitch differences, unless accompanied by substantial level differences. Experiment 5 evaluated concurrent segregation in a task requiring the detection of level changes in individual components of a complex tone. Generally, large changes were needed and abrupt changes were no easier to detect than gradual ones. In experiment 6, NRT testing confirmed substantially overlapping simulation by intracochlear electrodes. Overall, little or no evidence of auditory grouping by implant listeners was found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The object of the study was to investigate, establish and quantify the relationship between contrast sensitivity, intraocular light scatter and glare. The aim was to establish the effects on vision, in an effort to provide a more comprehensive understanding of the visual world of subjects prone to increased light scatter in the eye. Disability glare refers to the reduction in visual performance produced by a glare source. The reduction in visual performance can be explained by intraocular scattered light producing a veiling luminance which is superimposed upon the retinal image. This veiling luminance lowers contrast thus sensitivity to the stimulus declines. The effect of glare of luminance and colour contrast sensitivity for young and elderly subjects was examined. For both age groups, disability glare was greatest for the red-green stimulus and least for the blue-yellow. The precise effect of a glare source on colour discrimination depends upon the interaction between the chromaticity of the glare source and that of the stimulus. The effect of a long wavelength pass (red) and a short wavelength pass filter (blue) on disability glare was examined. Disability glare was not significantly different with the red and blue filters, even in the presence of wavelength dependent scatter. An equation was derived which allowed an intrinsic Light Scatter Factor (LSF) to be determined for any given glare angle (Paulsson and Sjöstrand, 1980). Corrections to the formula to account for factors such as pupil size changes are unnecessary. The results confirm the suitability of measuring the LSF using contrast threshold with and without glare, provided that appropriate methods are used. Using this formula an investigation into the amount of wavelength dependent scatter indicated that wavelength dependent scatter in normal young, elderly or cataractous eyes is of little or no significance. Finally, it seemed desirable to investigate the effect ultraviolet (UV) radiation has on intraocular light scatter and subsequently visual performance. Overall the results indicated that the presence or absence of UV radiation has relatively little effect on visual function for the young, elderly or cataract patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a common disorder of middle-aged and elderly people in which degeneration of the extrapyramidal motor system causes significant movement problems. In some patients, however, there are additional disturbances in sensory systems including loss of the sense of smell and auditory and/or visual problems. This article is a general overview of the visual problems likely to be encountered in PD. Changes in vision in PD may result from alterations in visual acuity, contrast sensitivity, colour discrimination, pupil reactivity, eye movements, motion perception, visual field sensitivity and visual processing speeds. Slower visual processing speeds can also lead to a decline in visual perception especially for rapidly changing visual stimuli. In addition, there may be disturbances of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations. Some of the treatments used in PD may also have adverse ocular reactions. The pattern electroretinogram (PERG) is useful in evaluating retinal dopamine mechanisms and in monitoring dopamine therapies in PD. If visual problems are present, they can have an important effect on the quality of life of the patient, which can be improved by accurate diagnosis and where possible, correction of such defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile technology has been one of the major growth areas in computing over recent years (Urbaczewski, Valacich, & Jessup, 2003). Mobile devices are becoming increasingly diverse and are continuing to shrink in size and weight. Although this increases the portability of such devices, their usability tends to suffer. Fuelled almost entirely by lack of usability, users report high levels of frustration regarding interaction with mobile technologies (Venkatesh, Ramesh, & Massey, 2003). This will only worsen if interaction design for mobile technologies does not continue to receive increasing research attention. For the commercial benefit of mobility and mobile commerce (m-commerce) to be fully realized, users’ interaction experiences with mobile technology cannot be negative. To ensure this, it is imperative that we design the right types of mobile interaction (m-interaction); an important prerequisite for this is ensuring that users’ experience meets both their sensory and functional needs (Venkatesh, Ramesh, & Massey, 2003). Given the resource disparity between mobile and desktop technologies, successful electronic commerce (e-commerce) interface design and evaluation does not necessarily equate to successful m-commerce design and evaluation. It is, therefore, imperative that the specific needs of m-commerce are addressed–both in terms of design and evaluation. This chapter begins by exploring the complexities of designing interaction for mobile technology, highlighting the effect of context on the use of such technology. It then goes on to discuss how interaction design for mobile devices might evolve, introducing alternative interaction modalities that are likely to affect that future evolution. It is impossible, within a single chapter, to consider each and every potential mechanism for interacting with mobile technologies; to provide a forward-looking flavor of what might be possible, this chapter focuses on some more novel methods of interaction and does not, therefore, look at the typical keyboard and visual display-based interaction which, in essence, stem from the desktop interaction design paradigm. Finally, this chapter touches on issues associated with effective evaluation of m-interaction and mobile application designs. By highlighting some of the issues and possibilities for novel m-interaction design and evaluation, we hope that future designers will be encouraged to “think out of the box” in terms of their designs and evaluation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications. © 2014 The Author.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of attentional limitations, the human visual system can process for awareness and response only a fraction of the input received. Lesion and functional imaging studies have identified frontal, temporal, and parietal areas as playing a major role in the attentional control of visual processing, but very little is known about how these areas interact to form a dynamic attentional network. We hypothesized that the network communicates by means of neural phase synchronization, and we used magnetoencephalography to study transient long-range interarea phase coupling in a well studied attentionally taxing dual-target task (attentional blink). Our results reveal that communication within the fronto-parieto-temporal attentional network proceeds via transient long-range phase synchronization in the beta band. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioral performance. Thus, we show how attentional limitations arise from the way in which the subsystems of the attentional network interact. The human brain faces an inestimable task of reducing a potentially overloading amount of input into a manageable flow of information that reflects both the current needs of the organism and the external demands placed on it. This task is accomplished via a ubiquitous construct known as “attention,” whose mechanism, although well characterized behaviorally, is far from understood at the neurophysiological level. Whereas attempts to identify particular neural structures involved in the operation of attention have met with considerable success (1-5) and have resulted in the identification of frontal, parietal, and temporal regions, far less is known about the interaction among these structures in a way that can account for the task-dependent successes and failures of attention. The goal of the present research was, thus, to unravel the means by which the subsystems making up the human attentional network communicate and to relate the temporal dynamics of their communication to observed attentional limitations in humans. A prime candidate for communication among distributed systems in the human brain is neural synchronization (for review, see ref. 6). Indeed, a number of studies provide converging evidence that long-range interarea communication is related to synchronized oscillatory activity (refs. 7-14; for review, see ref. 15). To determine whether neural synchronization plays a role in attentional control, we placed humans in an attentionally demanding task and used magnetoencephalography (MEG) to track interarea communication by means of neural synchronization. In particular, we presented 10 healthy subjects with two visual target letters embedded in streams of 13 distractor letters, appearing at a rate of seven per second. The targets were separated in time by a single distractor. This condition leads to the “attentional blink” (AB), a well studied dual-task phenomenon showing the reduced ability to report the second of two targets when an interval <500 ms separates them (16-18). Importantly, the AB does not prevent perceptual processing of missed target stimuli but only their conscious report (19), demonstrating the attentional nature of this effect and making it a good candidate for the purpose of our investigation. Although numerous studies have investigated factors, e.g., stimulus and timing parameters, that manipulate the magnitude of a particular AB outcome, few have sought to characterize the neural state under which “standard” AB parameters produce an inability to report the second target on some trials but not others. We hypothesized that the different attentional states leading to different behavioral outcomes (second target reported correctly or not) are characterized by specific patterns of transient long-range synchronization between brain areas involved in target processing. Showing the hypothesized correspondence between states of neural synchronization and human behavior in an attentional task entails two demonstrations. First, it needs to be demonstrated that cortical areas that are suspected to be involved in visual-attention tasks, and the AB in particular, interact by means of neural synchronization. This demonstration is particularly important because previous brain-imaging studies (e.g., ref. 5) only showed that the respective areas are active within a rather large time window in the same task and not that they are concurrently active and actually create an interactive network. Second, it needs to be demonstrated that the pattern of neural synchronization is sensitive to the behavioral outcome; specifically, the ability to correctly identify the second of two rapidly succeeding visual targets

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desktop user interface design originates from the fact that users are stationary and can devote all of their visual resource to the application with which they are interacting. In contrast, users of mobile and wearable devices are typically in motion whilst using their device which means that they cannot devote all or any of their visual resource to interaction with the mobile application -- it must remain with the primary task, often for safety reasons. Additionally, such devices have limited screen real estate and traditional input and output capabilities are generally restricted. Consequently, if we are to develop effective applications for use on mobile or wearable technology, we must embrace a paradigm shift with respect to the interaction techniques we employ for communication with such devices.This paper discusses why it is necessary to embrace a paradigm shift in terms of interaction techniques for mobile technology and presents two novel multimodal interaction techniques which are effective alternatives to traditional, visual-centric interface designs on mobile devices as empirical examples of the potential to achieve this shift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile and wearable computers present input/output prob-lems due to limited screen space and interaction techniques. When mobile, users typically focus their visual attention on navigating their environment - making visually demanding interface designs hard to operate. This paper presents two multimodal interaction techniques designed to overcome these problems and allow truly mobile, 'eyes-free' device use. The first is a 3D audio radial pie menu that uses head gestures for selecting items. An evaluation of a range of different audio designs showed that egocentric sounds re-duced task completion time, perceived annoyance, and al-lowed users to walk closer to their preferred walking speed. The second is a sonically enhanced 2D gesture recognition system for use on a belt-mounted PDA. An evaluation of the system with and without audio feedback showed users' ges-tures were more accurate when dynamically guided by au-dio-feedback. These novel interaction techniques demon-strate effective alternatives to visual-centric interface de-signs on mobile devices.