3 resultados para Atmospheric density

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The satellite ERS-1 was launched in July 1991 in a period of high solar activity. Sparse laser tracking and the failure of the experimental microwave system (PRARE) compounded the orbital errors which resulted from mismodelling of atmospheric density and hence surface forces. Three attempts are presented here to try and refine the coarse laser orbits of ERS-1, made prior to the availability of the full altimetric dataset. The results of the first attempt indicate that by geometrically modelling the satellite shape some improvement in orbital precision may be made for any satellite; especially one where no area tables already exist. The second and third refinement attempts are based on the introduction of data from some second satellite; in these examples SPOT-2 and TOPEX/Poseidon are employed. With SPOT-2 the method makes use of the orbital similarities to produce along-track corrections for the more fully tracked SPOT-2. Transferring these corrections to ERS-1 produces improvements in the precise orbits thus determined. With TOPEX/Poseidon the greater altitude results in a more precise orbit (gravity field and atmospheric errors are of less importance). Thus, by computing height differences at crossover points of the TOPEX/Poseidon and ERS-1 ground tracks the poorer orbit of ERS-1 may be improved by the addition of derived radial corrections. In the positive light of all three results several potential modification are suggested and some further avenues of investigation indicated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For optimum utilization of satellite-borne instrumentation, it is necessary to know precisely the orbital position of the spacecraft. The aim of this thesis is therefore two-fold - firstly to derive precise orbits with particular emphasis placed on the altimetric satellite SEASAT and secondly, to utilize the precise orbits, to improve upon atmospheric density determinations for satellite drag modelling purposes. Part one of the thesis, on precise orbit determinations, is particularly concerned with the tracking data - satellite laser ranging, altimetry and crossover height differences - and how this data can be used to analyse errors in the orbit, the geoid and sea-surface topography. The outcome of this analysis is the determination of a low degree and order model for sea surface topography. Part two, on the other hand, mainly concentrates on using the laser data to analyse and improve upon current atmospheric density models. In particular, the modelling of density changes associated with geomagnetic disturbances comes under scrutiny in this section. By introducing persistence modelling of a geomagnetic event and solving for certain geomagnetic parameters, a new density model is derived which performs significantly better than the state-of-the-art models over periods of severe geomagnetic storms at SEASAT heights. This is independently verified by application of the derived model to STARLETTE orbit determinations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the failure of PRARE the orbital accuracy of ERS-1 is typically 10-15 cm radially as compared to 3-4cm for TOPEX/Poseidon. To gain the most from these simultaneous datasets it is necessary to improve the orbital accuracy of ERS-1 so that it is commensurate with that of TOPEX/Poseidon. For the integration of these two datasets it is also necessary to determine the altimeter and sea state biases for each of the satellites. Several models for the sea state bias of ERS-1 are considered by analysis of the ERS-1 single satellite crossovers. The model adopted consists of the sea state bias as a percentage of the significant wave height, namely 5.95%. The removal of ERS-1 orbit error and recovery of an ERS-1 - TOPEX/Poseidon relative bias are both achieved by analysis of dual crossover residuals. The gravitational field based radial orbit error is modelled by a finite Fourier expansion series with the dominant frequencies determined by analysis of the JGM-2 co-variance matrix. Periodic and secular terms to model the errors due to atmospheric density, solar radiation pressure and initial state vector mis-modelling are also solved for. Validation of the dataset unification consists of comparing the mean sea surface topographies and annual variabilities derived from both the corrected and uncorrected ERS-1 orbits with those derived from TOPEX/Poseidon. The global and regional geographically fixed/variable orbit errors are also analysed pre and post correction, and a significant reduction is noted. Finally the use of dual/single satellite crossovers and repeat pass data, for the calibration of ERS-2 with respect to ERS-1 and TOPEX/Poseidon is shown by calculating the ERS-1/2 sea state and relative biases.