4 resultados para Astrophysics - Solar and Stellar Astrophysics

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desalination of groundwater is essential in arid regions that are remote from both seawater and freshwater resources. Desirable features of a groundwater desalination system include a high recovery ratio, operation from a sustainable energy source such as solar, and high water output per unit of energy and land. Here we propose a new system that uses a solar-Rankine cycle to drive reverse osmosis (RO). The working fluid such as steam is expanded against a power piston that actuates a pump piston which in turn pressurises the saline water thus passing it through RO membranes. A reciprocating crank mechanism is used to equalise the forces between the two pistons. The choice of batch mode in preference to continuous flow permits maximum energy recovery and minimal concentration polarisation in the vicinity of the RO membrane. This study analyses the sizing and efficiency of the crank mechanism, quantifies energy losses in the RO separation and predicts the overall performance. For example, a system using a field of linear Fresnel collectors occupying 1000 m2 of land and raising steam at 200 °C and 15.5 bar could desalinate 350 m3/day from saline water containing 5000 ppm of sodium chloride with a recovery ratio of 0.7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A family of titania derived nanocomposites synthesized via sol-gel and hydrothermal routes exhibit excellent performance for the photocatalytic degradation of two important exemplar water pollutants, oxytetracycline and Congo Red. Low loadings of Co3O4 nanoparticles dispersed over the surfaces of anatase TiO2 confer visible light photoactivity for the aqueous phase decomposition of organics through the resulting heterojunction and reduced band gap. Subsequent modification of these Co3O4/TiO2 composites by trace amounts of graphene oxide nanosheets in the presence of a diamine linker further promotes both oxytetracycline and Congo Red photodegradation under simulated solar and visible irradiation, through a combination of enhanced photoresponse and consequent radical generation. Radical quenching and fluorescence experiments implicate holes and hydroxyl radicals as the respective primary and secondary active species responsible for oxidative photodegradation of pollutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desalination of seawater driven by solar and other sustainable energy sources could in principle fulfil the growing needs of the world's most water-stressed countries. Reverse osmosis (RO) has become the most efficient process for desalination, making it the technology of choice for use with solar energy, and photovoltaics (PV) has become the most successful technology for solar energy conversion. But despite recent gains in the efficiency of PV-RO, substantial improvements are still possible because of the numerous energy losses occurring between input of sunlight and output of freshwater. This chapter gives an overview of some of the research activities and recent advances that could ultimately result in solar-powered RO systems becoming more than 10 times efficient than today. It also describes advances in waste heat recovery for RO desalination that are yielding greatly improved performance over desalination processes based on distillation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In brackish groundwater desalination, high recovery ratio (of fresh water from saline feed) is desired to minimise concentrate reject. To this effect, previous studies have developed a batch reverse osmosis (RO) desalination system, DesaLink, which proposed to expand steam in a reciprocating piston cylinder and transmit the driving force through a linkage crank mechanism to pressurise batches of saline water (recirculating) in a water piston cylinder unto RO membranes. However, steam is largely disadvantaged at operation from low temperature (< 150oC) thermal sources; and organic working fluids are more viable, though, the obtainable thermal cycle efficiencies are generally low with low temperatures. Consequently, this thesis proposed to investigate the use of organic working fluid Rankine cycle (ORC) with isothermal expansion, to drive the DesaLink machine, at improved thermal efficiency from low temperature thermal sources. Following a review of the methods of achieving isothermal expansion, ‘liquid flooded expansion’ and ‘expansion chamber surface heating’ were identified as potential alternative methods. Preliminary experimental comparative analysis of variants of the heated expansion chamber technique of effecting isothermal expansion favoured a heated plain wall technique, and as such was adopted for further optimisation and development. Further, an optimised isothermal ORC engine was built and tested at < 95oC heat source temperature, with R245fa working fluid – which was selected from 16 working fluids that were analysed for isothermal operation. Upon satisfactory performance of the test engine, a larger (10 times) version was built and coupled to drive the DesaLink system. Operating the integrated ORC-RO DesaLink system, gave freshwater (approximately 500 ppm) production of about 12 litres per hour (from 4000 ppm feed water) at a recovery ratio of about 0.7 and specific energy consumption of 0.34 kWh/m3; and at a thermal efficiency of 7.7%. Theoretical models characterising the operation and performance of the integrated system was developed and utilised to access the potential field performance of the system, when powered by two different thermal energy sources – solar and industrial bakery waste heat – as case studies.