6 resultados para Assembly line
em Aston University Research Archive
Resumo:
Purpose – A binary integer programming model for the simple assembly line balancing problem (SALBP), which is well known as SALBP-1, was formulated more than 30 years ago. Since then, a number of researchers have extended the model for the variants of assembly line balancing problem.The model is still prevalent nowadays mainly because of the lower and upper bounds on task assignment. These properties avoid significant increase of decision variables. The purpose of this paper is to use an example to show that the model may lead to a confusing solution. Design/methodology/approach – The paper provides a remedial constraint set for the model to rectify the disordered sequence problem. Findings – The paper presents proof that the assembly line balancing model formulated by Patterson and Albracht may lead to a confusing solution. Originality/value – No one previously has found that the commonly used model is incorrect.
Resumo:
Purpose – This paper sets out to study a production-planning problem for printed circuit board (PCB) assembly. A PCB assembly company may have a number of assembly lines for production of several product types in large volume. Design/methodology/approach – Pure integer linear programming models are formulated for assigning the product types to assembly lines, which is the line assignment problem, with the objective of minimizing the total production cost. In this approach, unrealistic assignment, which was suffered by previous researchers, is avoided by incorporating several constraints into the model. In this paper, a genetic algorithm is developed to solve the line assignment problem. Findings – The procedure of the genetic algorithm to the problem and a numerical example for illustrating the models are provided. It is also proved that the algorithm is effective and efficient in dealing with the problem. Originality/value – This paper studies the line assignment problem arising in a PCB manufacturing company in which the production volume is high.
Resumo:
Computer based discrete event simulation (DES) is one of the most commonly used aids for the design of automotive manufacturing systems. However, DES tools represent machines in extensive detail, while only representing workers as simple resources. This presents a problem when modelling systems with a highly manual work content, such as an assembly line. This paper describes research at Cranfield University, in collaboration with the Ford Motor Company, founded on the assumption that human variation is the cause of a large percentage of the disparity between simulation predictions and real world performance. The research aims to improve the accuracy and reliability of simulation prediction by including models of human factors.
Resumo:
It is indisputable that printed circuit boards (PCBs) play a vital role in our daily lives. With the ever-increasing applications of PCBs, one of the crucial ways to increase a PCB manufacturer’s competitiveness in terms of operation efficiency is to minimize the production time so that the products can be introduced to the market sooner. Optimal Production Planning for PCB Assembly is the first book to focus on the optimization of the PCB assembly lines’ efficiency. This is done by: • integrating the component sequencing and the feeder arrangement problems together for both the pick-and-place machine and the chip shooter machine; • constructing mathematical models and developing an efficient and effective heuristic solution approach for the integrated problems for both types of placement machines, the line assignment problem, and the component allocation problem; and • developing a prototype of the PCB assembly planning system. The techniques proposed in Optimal Production Planning for PCB Assembly will enable process planners in the electronics manufacturing industry to improve the assembly line’s efficiency in their companies. Graduate students in operations research can familiarise themselves with the techniques and the applications of mathematical modeling after reading this advanced introduction to optimal production planning for PCB assembly.