15 resultados para Asphalt in hydraulic engineering.

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation and characterisation of novel biodegradable polymer fibres for application in tissue engineering and drug delivery are reported. Poly(e-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. The tensile strength and stiffness of as-spun fibres were highly dependent on the concentration of the spinning solution. Use of a 6% w/v solution resulted in fibres having strength and stiffness of 1.8 MPa and 0.01 GPa respectively, whereas these values increased to 9.9 MPa and 0.1 GPa when fibres were produced from 20% w/v solutions. Cold drawing to an extension of 500% resulted in further increases in fibre strength (up to 50 MPa) and stiffness (0.3 GPa). Hot drawing to 500% further increased the fibre strength (up to 81 MPa) and stiffness (0.5 GPa). The surface morphology of as-spun fibres was modified, to yield a directional grooved pattern by drying in contact with a mandrel having a machined topography characterised by a peak-peak separation of 91 mm and a peak height of 30 mm. Differential scanning calorimetery (DSC) analysis of as-spun fibres revealed the characteristic melting point of PCL at around 58°C and a % crystallinity of approximately 60%. The biocompatibility of as-spun fibres was assessed using cell culture. The number of attached 3T3 Swiss mouse fibroblasts, C2C12 mouse myoblasts and human umbilical vein endothelial cells (HUVECs) on as-spun, 500% cold drawn, and gelatin coated PCL fibres were observed. The results showed that the fibres promoted cell proliferation for 9 days in cell culture and was slightly lower than on tissue culture plastic. The morphology of all cell lines was assessed on the various PCL fibres using scanning electron microscopy. The cell function of HUVECs growing on the as-spun PCL fibres was evaluated. The ability HUVECs to induce an immune response when stimulated with lipopolysaccaride (LPS) and thereby to increase the amount of cell surface receptors was assessed by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that PCL fibres did not inhibit this function compared to TCP. As-spun PCL fibres were loaded with 1 % ovine albumin (OVA) powder, 1% OVA nanoparticles and 5% OVA nanoparticles by weight and the protein release was assessed in vitro. PCL fibres loaded with 1 % OVA powder released 70%, 1% OVA nanoparticle released 60% and the 5% OVA nanoparticle released 25% of their protein content over 28 days. These release figures did not alter when the fibres were subjected to lipase enzymatic degradation. The OVA released was examined for structural integrity by SDS-PAGE. This showed that the protein molecular weight was not altered after incorporation into the fibres. The bioactivity of progesterone was assessed following incorporation into PCL fibres. Results showed that the progesterone released had a pronounced effect on MCF-7 breast epithelial cells, inhibiting their proliferation. The PCL fibres display high fibre compliance, a potential for controlling the fibre surface architecture to promote contact guidance effects, favorable proliferation rate of fibroblasts, myoblasts and HUVECs and the ability to release pharmaceuticals. These properties recommended their use for 3-D scaffold production in soft tissue engineering and the fibres could also be exploited for controlled presentation and release of biopharmaceuticals such as growth factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluids used in hydraulic systems inevitably contain large numbers of small, solid particles, a phenomenon known as 'fluid contamination'. Particles enter a hydraulic system from the environment, and are generated within it by processes of wear. At the same time, particles are removed from the system fluid by sedimentation and in hydraulic filters. This thesis considers the problems caused by fluid contamination, as they affect a manufacturer of axial piston pumps. The specific project aim was to investigate methods of predicting or determining the effects of fluid contamination on this type of pump. The thesis starts with a theoretical analysis of the contaminated lubrication of a slipper-pad bearing. Statistical methods are used to develop a model of the blocking, by particles, of the control capillaries used in such bearings. The results obtained are compared to published, experimental data. Poor correlation between theory and practice suggests that more research is required in this area before such theoretical analysis can be used in industry. Accelerated wear tests have been developed in the U.S.A. in an attempt to predict pump life when operating on contaminated fluids. An analysis of such tests shows that reliability data can only be obtained from extensive test programmes. The value of contamination testing is suggested to be in determining failure modes, and in identifying those pump components which are susceptible to the effects of contamination. A suitable test is described, and the results of a series of tests on axial piston pumps are presented and discussed. The thesis concludes that pump reliability data can only be obtained from field experience. The level of confidence which can be placed in results from normal laboratory testing is shown to be too low for the data to be of real value. Recommendations are therefore given for the ways in which service data should be collected and analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics: basic chemical engineering, operability and safety analysis and process control. User experiences from both teachers and students are presented. The benefits of dynamic simulation as an additional teaching tool are discussed and summarized. The experiences confirm that commercial dynamic simulators provide realistic training and can be successfully integrated into undergraduate and graduate teaching, laboratory courses and research. © 2012 The Institution of Chemical Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses and presents a case study of a practically oriented design project together with a few examples of implemented design projects recently incorporated into an undergraduate system course at the mechatronics engineering department in Ah-Balqa’ Applied University. These projects have had a positive impact on both the department and its graduates. The focus of these projects is the design and implementation of processor-based system. This helps graduate students cross the border between hardware design and software design. Our case study discusses the research methodology adopted for the physical development of the project, the technology used in the project, and the design experiences and outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Markovian models are widely used to analyse quality-of-service properties of both system designs and deployed systems. Thanks to the emergence of probabilistic model checkers, this analysis can be performed with high accuracy. However, its usefulness is heavily dependent on how well the model captures the actual behaviour of the analysed system. Our work addresses this problem for a class of Markovian models termed discrete-time Markov chains (DTMCs). We propose a new Bayesian technique for learning the state transition probabilities of DTMCs based on observations of the modelled system. Unlike existing approaches, our technique weighs observations based on their age, to account for the fact that older observations are less relevant than more recent ones. A case study from the area of bioinformatics workflows demonstrates the effectiveness of the technique in scenarios where the model parameters change over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The argument that this paper sets out to critique is that in order to promote professionalism in Engineering Education and Practice, graduate level engineering programmes need to introduce the concepts of reflection and reflexivity into the curriculum right from the onset. By focusing upon the delivery of a newly developed „Work Based‟ Master’s level programme in Professional Engineering, this paper provides an overview of the first part of an empirical study which sets out to investigate the challenges associated with embedding reflection and reflexivity into Engineering Education. The paper concludes by noting that whilst student engineers may struggle with the concepts of reflection and reflexivity, with support and encouragement such difficulties can be overcome. Moreover, by encouraging students to reflect upon their Professional Practice, the programme not only enables students to consider how they may apply what they have learnt to their Professional Practice, but also encourages them to think about how they can link their experiences as Professional Engineers to what and how they learn both whilst on the programme but also as lifelong learners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When an asphalt mixture is subjected to a destructive compressive load, it experiences a sequence of three deformation stages, as follows: the (1) primary, (2) secondary, and (3) tertiary stages. Most literature research focuses on plastic deformation in the primary and secondary stages, such as prediction of the flow number, which is in fact the initiation of the tertiary stage. However, little research effort has been reported on the mechanistic modeling of the damage that occurs in the tertiary stage. The main objective of this paper is to provide a mechanistic characterizing method for the damage modeling of asphalt mixtures in the tertiary stage. The preliminary study conducted by the writers illustrates that deformation during the tertiary flow of the asphalt mixtures is principally caused by the formation and propagation of cracks, which was signaled by the increase of the phase angle in the tertiary phase. The strain caused by the growth of cracks is the viscofracture strain, which can be obtained by conducting the strain decomposition of the measured total strain in the destructive compressive test. The viscofracture strain is employed in the research reported in this paper to mechanistically characterize the time-dependent fracture (viscofracture) of asphalt mixtures in compression. By using the dissipated pseudostrain energy-balance principle, the damage density and true stress are determined and both are demonstrated to increase with load cycles in the tertiary stage. The increased true stress yields extra viscoplastic strain, which is the reason why the permanent deformation is accelerated by the occurrence of cracks. To characterize the evolution of the viscofracture in the asphalt mixtures in compression, a pseudo J-integral Paris' law in terms of damage density is proposed and the material constants in the Paris' law are determined, which can be employed to predict the fracture of asphalt mixtures in compression. © 2013 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The civil engineering industry generally regards new methods and technology with a high amount of scepticism, preferring to use traditional and trusted methods. During the 1980s competition for civil engineering consultancy work in the world has become fierce. Halcrow recognised the need to maintain and improve their competitive edge over other consultants. The use of new technology in the form of microcomputers was seen to be one method to maintain and improve their repuation in the world. This thesis examines the role of microcomputers in civil engineering consultancy with particular reference to overseas projects. The involvement of civil engineers with computers, both past and present, has been investigated and a survey of the use of microcomputers by consultancies was carried out, the results are presented and analysed. A resume of the state-of-the-art of microcomputer technology was made. Various case studies were carried out in order to examine the feasibility of using microcomputers on overseas projects. One case study involved the examination of two projects in Bangladesh and is used to illustrate the requirements and problems encountered in such situations. Two programming applications were undertaken, a dynamic programming model of a single site reservoir and the simulation of the Bangladesh gas grid system. A cost-benefit analysis of a water resources project using microcomputers in the Aguan Valley, Honduras was carried out. Although the initial cost of microcomputers is often small, the overall costs can prove to be very high and are likely to exceed the costs of traditional computer methods. A planned approach for the use of microcomputers is essential in order to reap the expected benefits and recommendations for the implementation of such an approach are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Permanent deformation and fracture may develop simultaneously when an asphalt mixture is subjected to a compressive load. The objective of this research is to separate viscoplasticity and viscofracture from viscoelasticity so that the permanent deformation and fracture of the asphalt mixtures can be individually and accurately characterized without the influence of viscoelasticity. The undamaged properties of 16 asphalt mixtures that have two binder types, two air void contents, and two aging conditions are first obtained by conducting nondestructive creep tests and nondestructive dynamic modulus tests. Testing results are analyzed by using the linear viscoelastic theory in which the creep compliance and the relaxation modulus are modeled by the Prony model. The dynamic modulus and phase angle of the undamaged asphalt mixtures remained constant with the load cycles. The undamaged asphalt mixtures are then used to perform the destructive dynamic modulus tests in which the dynamic modulus and phase angle of the damaged asphalt mixtures vary with load cycles. This indicates plastic evolution and crack propagation. The growth of cracks is signaled principally by the increase of the phase angle, which occurs only in the tertiary stage. The measured total strain is successfully decomposed into elastic strain, viscoelastic strain, plastic strain, viscoplastic strain, and viscofracture strain by employing the pseudostrain concept and the extended elastic-viscoelastic correspondence principle. The separated viscoplastic strain uses a predictive model to characterize the permanent deformation. The separated viscofracture strain uses a fracture strain model to characterize the fracture of the asphalt mixtures in which the flow number is determined and a crack speed index is proposed. Comparisons of the 16 samples show that aged asphalt mixtures with a low air void content have a better performance, resisting permanent deformation and fracture. © 2012 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asphalt mixtures have been demonstrated to be anisotropic materials in both laboratory and field tests. The anisotropy of asphalt mixtures consists of inherent anisotropy and stress-induced anisotropy. In previous work, the inherent anisotropy of asphalt mixtures was quantified by using only the inclination angles of the coarse aggregate particles in the asphalt mixtures. However, the inclination of fine aggregates also has a contribution to the inherent anisotropy. Moreover, the contribution to the inherent anisotropy of each aggregate may not be the same as in the previous work but will depend on the size, orientation, and sphericity of the aggregate particle. This paper quantifies the internal microstructure of the aggregates in asphalt mixtures by using an aggregate-related geometric parameter, the vector magnitude. The original formulation of the vector magnitude, which addresses only the orientation of coarse aggregates, is modified to account for not only the coarse aggregate orientation, but also the size, orientation, and sphericity of coarse and fine aggregates. This formulation is applied to cylindrical lab-mixed lab-compacted asphalt mixture specimens varying in asphalt binder type, air void content, and aging period. The vertical modulus and the horizontal modulus are also measured by using nondestructive tests. A relationship between the modified vector magnitude and the modulus ratio of the vertical modulus to the horizontal modulus is developed to quantify the influence of the inherent microstructure of the aggregates on the anisotropy of the mixtures. The modulus ratio is found to depend solely on the aggregate characteristics including the inclination angle, size, and sphericity, and it is independent of the asphalt binder type, air void content, and aging period. The inclination angle, itself, proves to be insufficient to quantify the inherent anisotropy of the asphalt mixtures. © 2011 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study is to demonstrate using weak form partial differential equation (PDE) method for a finite-element (FE) modeling of a new constitutive relation without the need of user subroutine programming. The viscoelastic asphalt mixtures were modeled by the weak form PDE-based FE method as the examples in the paper. A solid-like generalized Maxwell model was used to represent the deforming mechanism of a viscoelastic material, the constitutive relations of which were derived and implemented in the weak form PDE module of Comsol Multiphysics, a commercial FE program. The weak form PDE modeling of viscoelasticity was verified by comparing Comsol and Abaqus simulations, which employed the same loading configurations and material property inputs in virtual laboratory test simulations. Both produced identical results in terms of axial and radial strain responses. The weak form PDE modeling of viscoelasticity was further validated by comparing the weak form PDE predictions with real laboratory test results of six types of asphalt mixtures with two air void contents and three aging periods. The viscoelastic material properties such as the coefficients of a Prony series model for the relaxation modulus were obtained by converting from the master curves of dynamic modulus and phase angle. Strain responses of compressive creep tests at three temperatures and cyclic load tests were predicted using the weak form PDE modeling and found to be comparable with the measurements of the real laboratory tests. It was demonstrated that the weak form PDE-based FE modeling can serve as an efficient method to implement new constitutive models and can free engineers from user subroutine programming.