6 resultados para Aspergillus clavatus
em Aston University Research Archive
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
During the 24 hour period following inoculation, aggregation of spores and sporelings can have an important effect on the subsequent growth of filamentous fungi in submerged culture. This early phase of growth does not appear to have received much attention, and it was for this reason that the author's research was started. The aggregation, germination and early growth of the filamentous fungus Aspergillus niger have been followed in aerated tower fermenters, by microscopic examination. By studying many individual sporelings it has been possible to estimate the specific growth rate and germination times, and then to assess the branching characteristics of the fungus over a period of from 1 to 10 hours after germination. The results have been incorporated into computer models to simulate the development of the physical structure of individual and aggregated sporelings. Following germination, and an initial rapid growth phase, fungi were found to grow exponentially: in the case of A.niger the mean germination time was about 5 hours and the doubling time was as short as 1.5 hours. Branching also followed an exponential pattern and appeared to be related to hyphal length. Using a simple hypothesis for growth along with empirical parameters, typical fungal structures were generated using the computer models : these compared well with actual sporelings observed under the microscope. Preliminary work suggested that the techniques used in this research could be successfully applied to a range of filamentous fungi.
Resumo:
Fungi are ubiquitous organisms in nature and can be found in association with healthy eyes. The incidence of actual fungal infection of the eye, however, is relatively low compared with that attributable to viruses and bacteria. Nevertheless, fungal infection of the eye is increasing especially in immuno-compromised patients and a wide variety of fungal infections have now been described worldwide with species of Fusarium, Aspergillus, Candida, and dematiaceous fungi predominating. At present there are a limited number of compounds available to control ocular mycoses while resistance to anti-fungal agents has been growing in recent years, especially to azoles. Several mechanisms of resistance have been identified including modification of sterol synthesis pathways by the fungus, modification of enzymes to reduce the binding of azoles to fungal components and increased efficiency of removal of the azole within fungal cells. Although resistance to amphotericin-B has been reported, it continues to be the most important treatment for life-threatening conditions and more severe ophthalmic infections. Natamycin is often first choice for filamentous fungal keratitis and topical amphotericin-B for Candida keratitis. Continued monitoring of the behaviour of ocular fungi will be essential in future together with the development of new anti-fungal agents.
Resumo:
The work reported in this thesis was carried out to contribute to the knowledge of the effects of substrate water availability or water activity (a ) on fungal growth parameters and its implications in the preparationw of materials susceptible to biodeterioration. Fungi were isolated from soils of different ecological sites at a range of substrate aw levels controlled by sodium chloride (NaCl). Three groups of fungi were isolated : firstly, those isolated only at high a (aw about 0.997).secondly, those isolated at high and decreasing aw (aw 0.997 to 0.85) and finally, those isolated at only decreased aw (aw O.95 to 0.80). From these isolations, test fungi were selected to study the effects of pH, temperature, exo-enzyme production and biocide efficacy at decreased aw levels, with glycerol and NaCl as a controlling solutes. The linear extension rates of the fungi increased at all test pH values near optimum a of growth. Test fungi of the Aspergillus glaucus group were found to be most resistant to low aw. Growth and survival of vegetative and fruiting bodies at elevated temperatures were enhanced with the addition of a controlling solutes. A. flavus, A. fumigatus displayed high heat resistance and A. amstelodami, A. versicolor and Penicillium citrinum displayed low heat resistance at high aw levels and vice versa at low aw levels. Amylase, lipase and protease activities were studied at lowered aw , using modifications of the test tube method of Raute11a and Cowling. Amylase and protease production in most xerophilic fungi ceased around 0.80 aw , but lipase production in some xerophilic fungi, including A. glatlcus fungi, was up to and including 0.70 aw with g1ycero1.
Resumo:
Earlier investigations (Cartland Glover et al., 2004) into the use of computational fluid dynamics (CFD) for the modelling of gas-liquid and gas-liquid-solid flow allowed a simple biochemical reaction model to be implemented. A single plane mesh was used to represent the transport and reaction of molasses, the mould Aspergillus niger and citric acid in a bubble column with a height to diameter aspect ratio of 20:1. Two specific growth rates were used to examine the impact that biomass growth had on the local solids concentration and the effect this had on the local hydrodynamics of the bubble column.