2 resultados para Asparaginyl Endopeptidase
em Aston University Research Archive
Resumo:
Activation of the hypoxia-inducible factor (HIF) pathway is a critical step in the transcriptional response to hypoxia. Although many of the key proteins involved have been characterised, the dynamics of their interactions in generating this response remain unclear. In the present study, we have generated a comprehensive mathematical model of the HIF-1a pathway based on core validated components and dynamic experimental data, and confirm the previously described connections within the predicted network topology. Our model confirms previous work demonstrating that the steps leading to optimal HIF-1a transcriptional activity require sequential inhibition of both prolyl- and asparaginyl-hydroxylases. We predict from our model (and confirm experimentally) that there is residual activity of the asparaginyl-hydroxylase FIH (factor inhibiting HIF) at low oxygen tension. Furthermore, silencing FIH under conditions where prolyl-hydroxylases are inhibited results in increased HIF-1a transcriptional activity, but paradoxically decreases HIF-1a stability. Using a core module of the HIF network and mathematical proof supported by experimental data, we propose that asparaginyl hydroxylation confers a degree of resistance upon HIF-1a to proteosomal degradation. Thus, through in vitro experimental data and in silico predictions, we provide a comprehensive model of the dynamic regulation of HIF-1a transcriptional activity by hydroxylases and use its predictive and adaptive properties to explain counter-intuitive biological observations.
Resumo:
Oxygen is a crucial molecule for cellular function. When oxygen demand exceeds supply, the oxygen sensing pathway centred on the hypoxia inducible factor (HIF) is switched on and promotes adaptation to hypoxia by up-regulating genes involved in angiogenesis, erythropoiesis and glycolysis. The regulation of HIF is tightly modulated through intricate regulatory mechanisms. Notably, its protein stability is controlled by the oxygen sensing prolyl hydroxylase domain (PHD) enzymes and its transcriptional activity is controlled by the asparaginyl hydroxylase FIH (factor inhibiting HIF-1).To probe the complexity of hypoxia-induced HIF signalling, efforts in mathematical modelling of the pathway have been underway for around a decade. In this paper, we review the existing mathematical models developed to describe and explain specific behaviours of the HIF pathway and how they have contributed new insights into our understanding of the network. Topics for modelling included the switch-like response to decreased oxygen gradient, the role of micro environmental factors, the regulation by FIH and the temporal dynamics of the HIF response. We will also discuss the technical aspects, extent and limitations of these models. Recently, HIF pathway has been implicated in other disease contexts such as hypoxic inflammation and cancer through crosstalking with pathways like NF?B and mTOR. We will examine how future mathematical modelling and simulation of interlinked networks can aid in understanding HIF behaviour in complex pathophysiological situations. Ultimately this would allow the identification of new pharmacological targets in different disease settings.