12 resultados para Aromatic moieties
em Aston University Research Archive
Resumo:
Cyclothialidine, a natural product isolated from Streptomyces .filipinensis NR0484, has been proven to be a potent and selective inhibitor of the bacterial enzyme DNA gyrase. Gyrase inhibition results in cell death, the enzyme being the target of several currently used antibiotics. Cyclothialidine showed poor activity against whole bacterial cells, highlighting scope for improvement regarding cell membrane pemeability in order for the full potential of this new class of antibiotics to be realised, Structurally, cyclothialidine contains a 12-membered lactone ring which is partly integrated into a pentapeptide chain, with a substituted aromatic moiety bordering the lactone, Retrosynthetically it can be traced back to cis-3-hydroxyproline, 3,5-dihydroxy-2,6-dimethylbenzoic acid and four commercially available amino acids; two serine, one cysteine and one alanine. In this work, a model of cyclothialidine was synthesised in order to establish the methodology for more complex compounds. Analogues with hydroxy, dihydroxy and dihydroxymethyl substituted aromatic moieties were then prepared to ensure successful protection methods could be performed and the pharmacophore synthesised. The key aromatic moiety, 2,6-dimethyl-3,5-dihydroxybenzoic acid was produced via two successive Mannich reaction/reduction steps. Acid protection using 4-nitrobenzyl bromide and TBDMS hydroxyl protection followed by bromination of one methyl afforded the desired intermediate. Reaction with a serine/cysteine dipeptide, followed by deprotection and cyclisation under Mitsunobu conditions lead to the 12-membered lactone. An amine substituted aromatic analogue and also replacement of the cysteine sulphur by oxygen were attempted but without success. In an effort to improve cell permeability, a conjugate was synthesised between the pharmacophore and a cholesterol moiety. It was hoped the steroid fragment would serve to increase potency by escorting the molecule through the lipid environment of the cell membrane. The pharmacophore and conjugate were tested against a variety of bacterial strains but the conjugate failed to improve activity.
Resumo:
The Knoevenagel condensation of aromatic aldehydes with active methylene compounds proceeded efficiently in a reusable ionic liquid, ethylammonium nitrate, at room temperature in the absence of any catalyst with high yields.
Resumo:
The Knoevenagel condensation of aromatic aldehydes with (2-thio)barbituric acid proceeded efficiently in reusable ionic liquids, EAN, BmimBF4, and BmimPF6 at room temperature in the absence of any catalyst with high yields.
Resumo:
The room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) is used as a ‘green' recyclable alternative to classical molecular solvents for the nucleophilic substitution reaction of a-tosyloxy ketones with potassium salts of aromatic acids. Significant rate enhancement and improved yields have been observed.
Resumo:
Isocyanate cross-linked hydroxy terminated polybutadiene is used as a binder for solid rocket propellant. Rocket motors containing this propellant require a storage life of at least 20 years. During storage it has been found that the important rubbery properties of the binder can be lost due to oxidative cross-linking of the polybutadiene chains. This could cause catastrophic failure when the rocket motor is required. At present the bis-hindered phenol Calco 2246 is used as a thermal oxidative stabiliser, but it's performance is only adequate. This has led to the search for a more efficient stabiliser system. To hasten the evaluation of new antioxidant systems the use of dynamic thermal analysis was investigated. Results showed that a tentative relationship existed between predictions by thermal analysis and the long term oven ageing for simple single antioxidant systems. But for more complex systems containing either autosynergistic or mixed antioxidants no relationship was observed suggesting that results for such an "accelerated" technique cannot be used for the purpose of extrapolation for long term performance. This was attributed to the short time and more aggressive condition used (hjgher temperature and oxygen rich atmosphere in thermal analysis) altering the mechanism of action of the antioxidants and not allowing time for co-operative effect of the combined antioxidant system to form. One potential problem for the binder system is the use of an diisocyanate as a cross-linking agent. This reacts with the hydroxyl hydrogen on the polymer as well as other active hydrogens such as those contained in a number of antioxidants, affecting both cross-linking and antioxidant effectiveness. Studies in this work showed that only antioxidants containing amine moieties have a significant affect on binder preparation, with the phenolic antioxidants not reacting. This is due to the greater nucleophilicity of the amines. Investigation of a range of antioxidant systems, including potentially homo, hetero and autosynergistic systems, has highlighted a number of systems which show considerably greater effectiveness than the currently used antioxidant Calco 2246. The only single antioxidant which showed improvement was the partially unhindered phenol y-Tocopherol. Of the mixed systems combinations of the sulphur containing antioxidants e.g. DLTP with higher levels of chain-breaking antioxidants, especially Calco 2246, were the most promising. Also the homosynergistic mix of an aromatic amine and a phenol was seen to be very effective but the results were inconsistent. This inconsistency could be explained by the method of sample preparation used. It was shown that the efficiency of a number of antioxidant.s could be dramatically improved by the use of ultrasound during the mixing stage of preparation. The reason for this increase in performance is unclear but in the case of the homosynergistic amine/phenol mix both more efficient mixing and/or the production of a novel mechanism of action are suggested
Resumo:
A detailed study has been made of the feasibility of adsorptive purification of slack waxes from traces of aromatic compounds using type 13X molecular sieves to achieve 0.01% aromatics in the product. The limited literature relating to the adsorption of high molecular weight aromatic compounds by zeolites was reviewed. Equilibrium isotherms were determined for typical individual aromatic compounds. Lower molecular weight, or more compact, molecules were preferentially adsorbed and the number of molecules captured by one unit cell decreased with increasing molecular weight of the adsorbate. An increase in adsorption temperature resulted in a decrease in the adsorption value. The isosteric heat of adsorption of differnt types of aromatic compounds was determined from pairs of isotherms at 303 K to 343 K at specific coverages. The lowest heats of adsorption were for dodecylbenzene and phenanthrene. Kinetics of adsorption were studied for different aromatic compounds. The diffusivity decreased significantly when a long alkyl chain was attached to the benzene ring e.g. in dodecylbenzene; molecules with small cross-sectional diameter e.g. cumene were adsorbed most rapidly. The sorption rate increased with temperature. Apparent activation energies increased with increasing polarity. In a study of the dynamic adsorption of selected aromatic compounds from binary solutions in isooctane or n-alkanes, naphthalene exhibited the best dynamic properties followed by dibenzothiophene and finally dodecylbenzene. The dynamic adsorption of naphthalene from different n-alkane solvents increased with a decrease in solvent molecular weight. A tentative mathematical approach is proposed for the prediction of dynamic breakthrough curves from equilibrium isotherms and kinetic data. The dynamic properties of liquid phase adsorption of aromatics from slack waxes were studied at different temperatures and concentrations. The optimum operating temperature was 543 K. The best dynamic performance was achieved with feeds of low aromatic content. The studies with individual aromatic compounds demonstrated the affinity of type NaX molecular sieves to adsorb aromatics in the concentration range 3% - 5% . Wax purification by adsorption was considered promising and extension of the experimental programme was recommended.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
A long-period grating (LPG) sensor is used to detect small variations in the concentration of an organic aromatic compound (xylene) in a paraffin (heptane) solution. A new design procedure is adopted and demonstrated to maximize the sensitivity of LPG (wavelength shift for a change in the surrounding refractive index, (dλ/dn3)) for a given application. The detection method adopted is comparable to the standard technique used in industry (high performance liquid chromatograph and UV spectroscopy) which has a relative accuracy between ∼±0.5% and 5%. The minimum detectable change in volumetric concentration is 0.04% in a binary fluid with the detection system presented. This change of concentration relates to a change in refractive index of Δn ∼ 6 × 10-5. © 2001 Elsevier Science B.V.
Resumo:
Scavenging of C- and O-centered free radicals is mandatory in processing stabilization of polypropylene. Phenolic antioxidants act principally as O-radical scavengers only. Aromatic amines, N,N'-disubstituted 1,4-phenylenediamines (PD) and 4,4'disubstituted diphenylamines (DPA), scavenge both C- and O-centered radicals and have consequently a broader activity spectrum. PD cannot be used, however, in polypropylene because of formation of strongly discoloring and staining sacrificial transformation products. Such products formed from DPA have even more discoloring properties. A good processing stability and acceptable extent of discoloration can be achieved by blends of phenols with 4,4'-di-tert.octyl DPA. The effect is considered as a beneficial cooperation between the two chain-breaking antioxidants involving interactions with amine-based transformation products.
Resumo:
This article describes the synthesis, structures and systematic study of the spectroscopic and redox properties of a series of octahedral molybdenum metal cluster complexes with aromatic sulfonate ligands (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] (where X- is Cl-, Br- or I-; OTs- is p-toluenesulfonate and PhSO3 - is benzenesulfonate). All the complexes demonstrated photoluminescence in the red region and an ability to generate singlet oxygen. Notably, the highest quantum yields (>0.6) and narrowest emission bands were found for complexes with a {Mo6I8}4+ cluster core. Moreover, cyclic voltammetric studies revealed that (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] confer enhanced stability towards electrochemical oxidation relative to corresponding starting complexes (nBu4N)2[{Mo6X8}X6].