11 resultados para Archaeological dark earths
em Aston University Research Archive
Resumo:
This introduction essay proposes a challenging program for researchers eager to explore factors and process mechanisms contributing to the benefits and costs individuals and groups incur from pursuing innovative approaches. With respect to individual innovation, such moderating factors might be found in the characteristics of the innovative idea, the innovator, co-workers, supervisors, the broader organizational context, and in national culture. Examples of factors that are likely to shape the beneficial and detrimental outcomes of group innovation include knowledge, skills and ability of group members, group tenure, diversity among group members, group processes (clarifying group objectives, participation, constructive management of competing perspectives), and external demands on groups. This Special Issue contains a state-of-the-science paper, three articles dealing with the benefits and costs of individual innovation, and three articles addressing the bright and dark sides of group innovation. Copyright © 2004 John Wiley & Sons, Ltd.
Resumo:
Visual detection performance (d') is usually an accelerating function of stimulus contrast, which could imply a smooth, threshold-like nonlinearity in the sensory response. Alternatively, Pelli (1985 Journal of the Optical Society of America A 2 1508 - 1532) developed the 'uncertainty model' in which responses were linear with contrast, but the observer was uncertain about which of many noisy channels contained the signal. Such internal uncertainty effectively adds noise to weak signals, and predicts the nonlinear psychometric function. We re-examined these ideas by plotting psychometric functions (as z-scores) for two observers (SAW, PRM) with high precision. The task was to detect a single, vertical, blurred line at the fixation point, or identify its polarity (light vs dark). Detection of a known polarity was nearly linear for SAW but very nonlinear for PRM. Randomly interleaving light and dark trials reduced performance and rendered it non-linear for SAW, but had little effect for PRM. This occurred for both single-interval and 2AFC procedures. The whole pattern of results was well predicted by our Monte Carlo simulation of Pelli's model, with only two free parameters. SAW (highly practised) had very low uncertainty. PRM (with little prior practice) had much greater uncertainty, resulting in lower contrast sensitivity, nonlinear performance, and no effect of external (polarity) uncertainty. For SAW, identification was about v2 better than detection, implying statistically independent channels for stimuli of opposite polarity, rather than an opponent (light - dark) channel. These findings strongly suggest that noise and uncertainty, rather than sensory nonlinearity, limit visual detection.
Resumo:
This thesis presents experimental and theoretical work on the use of dark optical solitons as data carriers in communications systems. The background chapters provide an introduction to nonlinear optics, and to dark solitons, described as intensity dips in a bright background, with an asymmetrical phase profile. The motivation for the work is explained, considering both the superior stability of dark solitons and the need for a soliton solution suitable for the normal, rather than the anomalous (bright soliton) dispersion regime. The first chapters present two generation techniques, producing packets of dark solitons via bright pulse interaction, and generating continuous trains of dark pulses using a fibre laser. The latter were not dark solitons, but were suitable for imposition of the required phase shift by virtue of their extreme stability. The later chapters focus on the propagation and control of dark solitons. Their response to periodic loss and gain is shown to result in the exponential growth of spectral sidebands. This may be suppressed by reducing the periodicity of the loss/gain cycle or using periodic filtering. A general study of the response of dark solitons to spectral filtering is undertaken, showing dramatic differences in the behaviour of black and 99.9% grey solitons. The importance of this result is highlighted by simulations of propagation in noisy systems, where the timing jitter resulting from random noise is actually enhanced by filtering. The results of using sinusoidal phase modulation to control pulse position are presented, showing that the control is at the expense of serious modulation of the bright background. It is concluded that in almost every case, dark and bright solitons have very different properties, and to continue to make comparisons would not be so productive as to develop a deeper understanding of the interactions between the dark soliton and its bright background.
Resumo:
This paper explores the relationship between self-reported innovative characteristics and dysfunctional personality traits. Participants (N = 207) from a range of occupations completed the Innovation Potential Indicator (IPI) and the Hogan Development Survey (HDS). Those who reported innovative characteristics also reported the following dysfunctional traits: Arrogant, Manipulative, Dramatic, Eccentric; and lower levels of Cautious, Perfectionist and Dependent. A representative approximation of the higher order factor “moving against people” (Hogan & Hogan, 1997) was positively associated with innovative characteristics. It is concluded that innovation potential may be viewed as a positive effect of some otherwise dysfunctional traits, most notably those encompassed under the second-order HDS factor ‘moving against people’.
Resumo:
We analyze the performance through numerical simulations of a new modulation format: serial dark soliton (SDS) for wide-area 100-Gb/s applications. We compare the performance of the SDS with conventional dark soliton, amplitude-modulation phase-shift keying (also known as duobinary), nonreturn-to-zero, and return-to-zero modulation formats, when subjected to typical wide-area-network impairments. We show that the SDS has a strong chromatic dispersion and polarization-mode-dispersion tolerance, while maintaining a compact spectrum suitable for strong filtering requirement in ultradense wavelength-division-multiplexing applications. The SDS can be generated using commercially available components for 40-Gb/s applications and is cost efficient when compared with other 100-Gb/s electrical-time-division-multiplexing systems.
Resumo:
In less than a decade, personal computers have become part of our daily lives. Many of us come into contact with computers every day, whether at work, school or home. As useful as the new technologies are, they also have a darker side. By making computers part of our daily lives, we run the risk of allowing thieves, swindlers, and all kinds of deviants directly into our homes. Armed with a personal computer, a modem and just a little knowledge, a thief can easily access confidential information, such as details of bank accounts and credit cards. This book helps people avoid harm at the hands of Internet criminals. It offers a tour of the more dangerous parts of the Internet, as the author explains who the predators are, their motivations, how they operate and how to protect against them. In less than a decade, personal computers have become part of our daily lives. Many of us come into contact with computers every day, whether at work, school or home. As useful as the new technologies are, they also have a darker side. By making computers part of our daily lives, we run the risk of allowing thieves, swindlers, and all kinds of deviants directly into our homes. Armed with a personal computer, a modem and just a little knowledge, a thief can easily access confidential information, such as details of bank accounts and credit cards. This book is intended to help people avoid harm at the hands of Internet criminals. It offers a tour of the more dangerous parts of the Internet, as the author explains who the predators are, their motivations, how they operate and how to protect against them. Behind the doors of our own homes, we assume we are safe from predators, con artists, and other criminals wishing us harm. But the proliferation of personal computers and the growth of the Internet have invited these unsavory types right into our family rooms. With a little psychological knowledge a con man can start to manipulate us in different ways. A terrorist can recruit new members and raise money over the Internet. Identity thieves can gather personal information and exploit it for criminal purposes. Spammers can wreak havoc on businesses and individuals. Here, an expert helps readers recognize the signs of a would-be criminal in their midst. Focusing on the perpetrators, the author provides information about how they operate, why they do it, what they hope to do, and how to protect yourself from becoming a victim.
Resumo:
For an Erbium-doped mode locked fibre laser, we demonstrate experimentally a new type of vector rogue waves (RWs) emergence of which is caused by the coherent coupling of the orthogonal states of polarisation (SOPs). Unlike weak interaction between neighbouring dissipative solitons for the soliton rain, this creates a new type of the energy landscape where the interaction of the orthogonal SOPs leads to polarisation trapping or escapes from the trapping triggered by polarisation instabilities and so results in the pulse dynamics satisfying criteria of the 'dark' and 'bright' RWs. The obtained results, apart from the fundamental interest, can provide a base for development of the rogue waves mitigation techniques in the context of the applications in photonics and beyond.
Dark soliton generation from semiconductor optical amplifier gain medium in ring fiber configuration
Resumo:
We have investigated the mode-lock operation from a semiconductor optical amplifier (SOA) gain chip in the ring fibre configuration. At lower pump currents, the laser generates dark soliton pulses both at the fundamental repetition rate of 39 MHz and supports up to the 6th harmonic order corresponding to 234-MHz repetition rate with an output power of ∼2.1 mW. At higher pump currents, the laser can be switched between the bright, dark and concurrent bright and dark soliton generation regimes.