8 resultados para Aqueous colloidal suspensions

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several axi-symmetric EN3B steel components differing in shape and size were forged on a 100 ton joint knuckle press. A load cell fitted under the lower die inserts recorded the total deformation forces. Job parameters were measured off the billets and the forged parts. Slug temperatures were varied and two lubricants - aqueous colloidal graphite and oil - were used. An industrial study was also conducted to check the results of the laboratory experiments. Loads were measured (with calibrated extensometers attached to the press frames) when adequately heated mild steel slugs were being forged in finishing dies. Geometric parameters relating to the jobs and the dies were obtained from works drawings. All the variables considered in the laboratory study could not, however, be investigated without disrupting production. In spite of this obvious limitation, the study confirmed that parting area is the most significant geometric factor influencing the forging load. Multiple regression analyses of the laboratory and industrial results showed that die loads increase significantly with the weights and parting areas of press forged components, and with the width to thickness ratios of the flashes formed, but diminish with increasing slug temperatures and higher billet diameter to height ratios. The analyses also showed that more complicated parts require greater loads to forge them. Die stresses, due to applied axial loads, were investigated by the photoelastic method. The three dimensional frozen stress technique was employed. Model dies were machined from cast araldite cylinders, and the slug material was simulated with plasticene. Test samples were cut from the centres of the dies after the stress freezing. Examination of the samples, and subsequent calculations, showed that the highest stresses were developed in die outer corners. This observation partly explains why corner cracking occurs frequently in industrial forging dies. Investigation of die contact during the forging operation revealed the development of very high stresses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The adsorption of two qroups of nonionic surface active agents and a series of hiqh molecular weiqht hydrophilic polymer fractions onto a polystyrene latex and a drug substance diloxanide furoate B.P. has been investigated. The presence of pores within the drug surface has been demonstrated and this is shown to increase the adsorption of low molecular weight polymer species. Differences in the maximum amount of polymer adsorbed at both solid-solution interfaces have been ascribed to the different hydrophobicities of the surface as determined by contact angle measurements. Adsorbed layer thicknesses of polymer on polystyrene latex have been determined by three techniques: microelectrophoresis, intensity fluctuation spectroscopy and by viscometric means. These results, in combination with adsorption data, were used to interpret the configuration of the adsorbed polymer molecules at the interface. The type of druq suspension produced on adsorbing the different polymers in the absence of electrostatic stabilization was correlated with theoretical prediuctions of suspension characteristics deduced from potential energy diagrams, The agreement was good for the adsorption of short chain length surfactants, but for the polyvinylalcohols, discrepancies were found between experiment and theory. This was attributed to the inappropriate use of a mean segment density approximation within the adsorbed layer to calculate attractive potentials between particles. A maximum in the redispersibility values for suspensions coated with adsorbed nonylphenylethoxylates was attributed to "partial static stabilization" of the particles in conjunction with the attractive forces operating in the sediment between bare surface patches on neighbouring particles. No significant change in the dissolution of the drug was observed when nonylphenylethoxylates were adsorbed due to desorption upon contact with the dissolution medium. Pluronic F68 and all the polyvinylalcohol fractions caused a reduction in the dissolution rate which is explained by the decreased diffusion of drug' through the adsorbed polymer layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions between proteins and gold colloids functionalized with protein-resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11) (OCH(2)CH(2))(6)OMe (EG(6)OMe), in aqueous solution have been studied by small-angle X-ray scattering (SAXS) and UV-vis spectroscopy. The mean size, 2R, and the size distribution of the decorated gold colloids have been characterized by SAXS. The monolayer-protected gold colloids have no correlations due to the low volume fraction in solution and are stable in a wide range of temperatures (5-70 degrees C, pH (1.3-12.4), and ionic strength (0-1.0 M). In contrast, protein (bovine serum albumin) solutions with concentrations in the range of 60-200 mg/mL (4.6-14.5 vol show a pronounced correlation peak in SAXS, which results from the repulsive electrostatic interaction between charged proteins. These protein interactions show significant dependence on ionic strength, as would be expected for an electrostatic interaction (Zhang et al. J. Phys. Chem. B 2007, 111, 251). For a mixture of proteins and gold colloids, the protein-protein interaction changes little upon mixing with OEG-decorated gold colloids. In contrast, the colloid-colloid interaction is found to be strongly dependent on the protein concentration and the size of the colloid itself. Adding protein to a colloidal solution results in an attractive depletion interaction between functionalized gold colloids, and above a critical protein concentration, c*, the colloids form aggregates and flocculate. Adding salt to such mixtures enhances the depletion effect and decreases the critical protein concentration. The aggregation is a reversible process (i.e., diluting the solution leads to dissolution of aggregates). The results also indicate that the charge of the OEG self-assembled monolayer at a curved interface has a rather limited effect on the colloidal stabilization and the repulsive interaction with proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloidal stability and efficient interfacial charge transfer in semiconductor nanocrystals are of great importance for photocatalytic applications in aqueous solution since they provide long-term functionality and high photocatalytic activity, respectively. However, colloidal stability and interfacial charge transfer efficiency are difficult to optimize simultaneously since the ligand layer often acts as both a shell stabilizing the nanocrystals in colloidal suspension and a barrier reducing the efficiency of interfacial charge transfer. Here, we show that, for cysteine-coated, Pt-decorated CdS nanocrystals and Na2SO3 as hole scavenger, triethanolamine (TEOA) replaces the original cysteine ligands in situ and prolongs the highly efficient and steady H2 evolution period by more than a factor of 10. It is shown that Na2SO3 is consumed during H2 generation while TEOA makes no significant contribution to the H2 generation. An apparent quantum yield of 31.5%, a turnover frequency of 0.11 H2/Pt/s, and an interfacial charge transfer rate faster than 0.3 ps were achieved in the TEOA stabilized system. The short length, branched structure and weak binding of TEOA to CdS as well as sufficient free TEOA in the solution are the keys to enhancing colloidal stability and maintaining efficient interfacial charge transfer at the same time. Additionally, TEOA is commercially available and cheap, and we anticipate that this approach can be widely applied in many photocatalytic applications involving colloidal nanocrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A consequence of a loss of coolant accident is that the local insulation material is damaged and maybe transported to the containment sump where it can penetrate and/or block the sump strainers. An experimental and theoretical study, which examines the transport of mineral wool fibers via single and multi-effect experiments is being performed. This paper focuses on the experiments and simulations performed for validation of numerical models of sedimentation and resuspension of mineral wool fiber agglomerates in a racetrack type channel. Three velocity conditions are used to test the response of two dispersed phase fiber agglomerates to two drag correlations and to two turbulent dispersion coefficients. The Eulerian multiphase flow model is applied with either one or two dispersed phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use molecular dynamics simulations to compare the conformational structure and dynamics of a 21-base pair RNA sequence initially constructed according to the canonical A-RNA and A'-RNA forms in the presence of counterions and explicit water. Our study aims to add a dynamical perspective to the solid-state structural information that has been derived from X-ray data for these two characteristic forms of RNA. Analysis of the three main structural descriptors commonly used to differentiate between the two forms of RNA namely major groove width, inclination and the number of base pairs in a helical twist over a 30 ns simulation period reveals a flexible structure in aqueous solution with fluctuations in the values of these structural parameters encompassing the range between the two crystal forms and more. This provides evidence to suggest that the identification of distinct A-RNA and A'-RNA structures, while relevant in the crystalline form, may not be generally relevant in the context of RNA in the aqueous phase. The apparent structural flexibility observed in our simulations is likely to bear ramifications for the interactions of RNA with biological molecules (e.g. proteins) and non-biological molecules (e.g. non-viral gene delivery vectors). © CSIRO 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of sodium cholate (NaC; concentration 1-16 mM), a biological surfactant, on the aggregation behavior of 1% (w/v, 2.2 × 10(-3) M) poly(N-isopropylacrylamide) (PNIPAM) aqueous solutions was studied as a function of temperature. From turbidity, dynamic light scattering, viscosity, and fluorescence measurements, it was observed that (i) there is NaC-induced nanoscale aggregation of PNIPAM in its sol state and (ii) the lower critical solution temperature corresponding to sol-gel transition shifts to a lower temperature by about 2 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.