2 resultados para Aquatic data
em Aston University Research Archive
Resumo:
In the face of global population growth and the uneven distribution of water supply, a better knowledge of the spatial and temporal distribution of surface water resources is critical. Remote sensing provides a synoptic view of ongoing processes, which addresses the intricate nature of water surfaces and allows an assessment of the pressures placed on aquatic ecosystems. However, the main challenge in identifying water surfaces from remotely sensed data is the high variability of spectral signatures, both in space and time. In the last 10 years only a few operational methods have been proposed to map or monitor surface water at continental or global scale, and each of them show limitations. The objective of this study is to develop and demonstrate the adequacy of a generic multi-temporal and multi-spectral image analysis method to detect water surfaces automatically, and to monitor them in near-real-time. The proposed approach, based on a transformation of the RGB color space into HSV, provides dynamic information at the continental scale. The validation of the algorithm showed very few omission errors and no commission errors. It demonstrates the ability of the proposed algorithm to perform as effectively as human interpretation of the images. The validation of the permanent water surface product with an independent dataset derived from high resolution imagery, showed an accuracy of 91.5% and few commission errors. Potential applications of the proposed method have been identified and discussed. The methodology that has been developed 27 is generic: it can be applied to sensors with similar bands with good reliability, and minimal effort. Moreover, this experiment at continental scale showed that the methodology is efficient for a large range of environmental conditions. Additional preliminary tests over other continents indicate that the proposed methodology could also be applied at the global scale without too many difficulties
Resumo:
In previous Statnotes, many of the statistical tests described rely on the assumption that the data are a random sample from a normal or Gaussian distribution. These include most of the tests in common usage such as the ‘t’ test ), the various types of analysis of variance (ANOVA), and Pearson’s correlation coefficient (‘r’) . In microbiology research, however, not all variables can be assumed to follow a normal distribution. Yeast populations, for example, are a notable feature of freshwater habitats, representatives of over 100 genera having been recorded . Most common are the ‘red yeasts’ such as Rhodotorula, Rhodosporidium, and Sporobolomyces and ‘black yeasts’ such as Aurobasidium pelculans, together with species of Candida. Despite the abundance of genera and species, the overall density of an individual species in freshwater is likely to be low and hence, samples taken from such a population will contain very low numbers of cells. A rare organism living in an aquatic environment may be distributed more or less at random in a volume of water and therefore, samples taken from such an environment may result in counts which are more likely to be distributed according to the Poisson than the normal distribution. The Poisson distribution was named after the French mathematician Siméon Poisson (1781-1840) and has many applications in biology, especially in describing rare or randomly distributed events, e.g., the number of mutations in a given sequence of DNA after exposure to a fixed amount of radiation or the number of cells infected by a virus given a fixed level of exposure. This Statnote describes how to fit the Poisson distribution to counts of yeast cells in samples taken from a freshwater lake.