8 resultados para Aquaporin 1

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well-known that the rapid flow of water into and out of cells is controlled by membrane proteins called aquaporins (AQPs). However, the mechanisms that allow cells to quickly respond to a changing osmotic environment are less well established. Using GFP-AQP fusion proteins expressed in HEK293 cells, we demonstrate the reversible manipulation of cellular trafficking of AQP1. AQP1 trafficking was mediated by the tonicity of the cell environment in a specific PKC- and microtubule-dependent manner. This suggests that the increased level of water transport following osmotic change may be due a phosphorylation-dependent increase in the level of AQP1 trafficking resulting in membrane localization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The family's structural features and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this has only been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations, through transient receptor potential channels, that trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly-changing local cellular water availability. Moreover, since calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eukaryotic-especially human-membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization. © 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water passes through cell membranes relatively slowly by diffusion. In order to maintain water homeostasis, the rapid and specific regulation of cellular water flow is mediated by the aquaporin (AQP) family of membrane protein water channels. The wide range of tissues that are known to express AQPs is reflected by their involvement in many physiological processes and diseases; thirteen human AQPs have been identified to date and the majority are highly specific for water while others show selectivity for water, glycerol and other small solutes. Receptor mediated translocation, via hormone activation, is an established method of AQP regulation, especially for AQP2. There is now an emerging consensus that the rapid and reversible translocation of other AQPs from intracellular vesicles to the plasma membrane, triggered by a range of stimuli, confers altered membrane permeability thereby acting as a regulatory mechanism. This review examines the molecular components that may enable such AQP regulation; these include cytoskeletal proteins, kinases, calcium and retention or localization signals. Current knowledge on the dynamic regulation of sub-cellular AQP translocation in response to a specific trigger is explored in the context of the regulation of cellular water flow. © 2013 Informa UK, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aquaporin family of integral membrane proteins is comprised of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically-driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves protein kinase A (PKA) activation, influx of extracellular calcium and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine- 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain oedema.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing prevalence of breast cancer (BC) in different parts of the world, particularly in the UK, highlights the importance of research into the aetiology and pathology of the disease. BC is the most common malignancy affecting women worldwide. Aquaporins (AQPs) are membrane protein channels that regulate cellular water flow. Recently, studies have demonstrated that expression of AQP3 is up-regulated in cancerous breast tissue. The present study examines the role of AQP3 in BC cell biology. Examination of clinical cases of BC showed higher AQP3 gene and protein expression in cancer tissues compared to healthy border tissues. In distinct clinicopathological groups however there were no differences observed with regards to AQP3 expression, suggesting that AQP3 expression may not be a predictor of lymph node infiltration or tumour grade. shRNA technology was used to knockdown gene expression of AQP3 in the invasive MDA-MB-231 BC cellular model. Cellular proliferation, migration, invasion, adhesion and response to the 5- fluorouracil (5-FU) based chemotherapy treatment were investigated in parental and knockdown cell line. AQP3 knockdown cells showed reduction in cellular proliferation, migration, invasion and increase in cell sensitivity to 5-FU compared with wild type (WT) or scrambled control (SC) cells. The effects of AQP3 knockdown on cellular glycolytic ability and ATP cellular content were quantified. Indirect glucose uptake was also measured by quantifying reconditioned media. AQP3 knockdown cells showed significantly lower levels of glucose uptake as compared to WT or SC. However there was no difference in the glycolytic ability and ATP content of the cells suggesting AQP3 has no role in cancer cell energetics. These data collectively suggest AQP3 expression is associated with the BC disease clinically and plays a role in multiple important aspects of BC pathophysiology, thus AQP3 represents a novel target for therapeutic intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren’s syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aquaporins (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3 and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family.