6 resultados para Apparent viscosity

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/aims Macular pigment is thought to protect the macula against exposure to light and oxidative stress, both of which may play a role in the development of age-related macular degeneration. The aim was to clinically evaluate a novel cathode-ray-tube-based method for measurement of macular pigment optical density (MPOD) known as apparent motion photometry (AMP). Methods The authors took repeat readings of MPOD centrally (0°) and at 3° eccentricity for 76 healthy subjects (mean (±SD) 26.5±13.2 years, range 18–74 years). Results The overall mean MPOD for the cohort was 0.50±0.24 at 0°, and 0.28±0.20 at 3° eccentricity; these values were significantly different (t=-8.905, p<0.001). The coefficients of repeatability were 0.60 and 0.48 for the 0 and 3° measurements respectively. Conclusions The data suggest that when the same operator is taking repeated 0° AMP MPOD readings over time, only changes of more than 0.60 units can be classed as clinically significant. In other words, AMP is not suitable for monitoring changes in MPOD over time, as increases of this magnitude would not be expected, even in response to dietary modification or nutritional supplementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To analyse the relationship between measured intraocular pressure (IOP) and central corneal thickness (CCT), corneal hysteresis (CH) and corneal resistance factor (CRF) in ocular hypertension (OHT), primary open-angle (POAG) and normal tension glaucoma (NTG) eyes using multiple tonometry devices. Methods: Right eyes of patients diagnosed with OHT (n=47), normal tension glaucoma (n=17) and POAG (n=50) were assessed, IOP was measured in random order with four devices: Goldmann applanation tonometry (GAT); Pascal(R) dynamic contour tonometer (DCT); Reichert(R) ocular response analyser (ORA); and Tono-Pen(R) XL. CCT was then measured using a hand-held ultrasonic pachymeter. CH and CRF were derived from the air pressure to corneal reflectance relationship of the ORA data. Results: Compared to the GAT, the Tonopen and ORA Goldmann equivalent (IOPg) and corneal compensated (IOPcc) measured higher IOP readings (F=19.351, p<0.001), particularly in NTG (F=12.604, p<0.001). DCT was closest to Goldmann IOP and had the lowest variance. CCT was significantly different (F=8.305, p<0.001) between the 3 conditions as was CH (F=6.854, p=0.002) and CRF (F=19.653, p<0.001). IOPcc measures were not affected by CCT. The DCT was generally not affected by corneal biomechanical factors. Conclusion: This study suggests that as the true pressure of the eye cannot be determined non-invasively, measurements from any tonometer should be interpreted with care, particularly when alterations in the corneal tissue are suspected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An international round robin study of the viscosity measurements and aging of fast pyrolysis bio-oil has been undertaken recently, and this work is an outgrowth from that effort. Two bio-oil samples were distributed to two laboratories for accelerated aging tests and to three laboratories of long-term aging studies. The accelerated aging test was defined as the change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C. The test was repeated 10 times over consecutive days to determine the intra-laboratory repeatability of the method. Other bio-oil samples were placed in storage at three temperatures, 21, 5, and -17 °C, for a period of up to 1 year to evaluate the change in viscosity. The variation in the results of the accelerated aging test was shown to be low within a given laboratory. The long-term aging studies showed that storage of a filtered bio-oil under refrigeration can minimize the amount of change in viscosity. The accelerated aging test gave a measure of change similar to that of 6-12 months of storage at room temperature for a filtered bio-oil. Filtration of solids was identified as a key contributor to improving the stability of the bio-oil as expressed by the viscosity based on results of the accelerated aging tests as well as long-term aging studies. Only the filtered bio-oil consistently gave useful results in the accelerated aging and long-term aging studies. The inconsistency suggests that better protocols need to be developed for sampling bio-oils. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace. © 2012 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An international round robin study of the stability of fast pyrolysis bio-oil was undertaken. Fifteen laboratories in five different countries contributed. Two bio-oil samples were distributed to the laboratories for stability testing and further analysis. The stability test was defined in a method provided with the bio-oil samples. Viscosity measurement was a key input. The change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C was the defining element of stability. Subsequent analyses included ultimate analysis, density, moisture, ash, filterable solids, and TAN/pH determination, and gel permeation chromatography. The results showed that kinematic viscosity measurement was more generally conducted and more reproducibly performed versus dynamic viscosity measurement. The variation in the results of the stability test was great and a number of reasons for the variation were identified. The subsequent analyses proved to be at the level of reproducibility, as found in earlier round robins on bio-oil analysis. Clearly, the analyses were more straightforward and reproducible with a bio-oil sample low in filterable solids (0.2%), compared to one with a higher (2%) solids loading. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace. © 2012 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactivity of chemically isolated lignocellulosic blocks, namely, α-cellulose, holocellulose, and lignin, has been rationalized on the basis of the dependence of the effective activation energy (Eα) upon conversion (α) determined via the popular isoconversional kinetic analysis, Friedman’s method. First of all, a detailed procedure for the thermogravimetric data preparation, kinetic calculation, and uncertainty estimation was implemented. Resulting Eα dependencies obtained for the slow pyrolysis of the extractive-free Eucalyptus grandis isolated α-cellulose and holocellulose remained constant for 0.05 < α < 0.80 and equal to 173 ± 10, 208 ± 11, and 197 ± 118 kJ/mol, thus confirming the single-step nature of pyrolysis. On the other hand, large and significant variations in Eα with α from 174 ± 10 to 322 ± 11 kJ/mol in the region of 0.05 and 0.79 were obtained for the Klason lignin and reported for the first time. The non-monotonic nature of weight loss at low and high conversions had a direct consequence on the confidence levels of Eα. The new experimental and calculation guidelines applied led to more accurate estimates of Eα values than those reported earlier. The increasing Eα dependency trend confirms that lignin is converted into a thermally more stable carbonaceous material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viscosity of four aged bio-oil samples was measured experimentally at various shear rates and temperatures using a rotational viscometer. The experimental bio-oils were derived from fast pyrolysis of beech wood at 450, 500, and 550 °C and Miscanthus at 500 °C (in this work, they were named as BW1, BW2, BW3, and MXG) in a bubbling fluidized bed reactor. The viscosity of all bio-oils was kept constant at various shear rates at the same temperature, which indicated that they were Newtonian fluids. The viscosity of bio-oils was strongly dependent upon the temperature, and with the increase of the temperature from 30 to 80 °C, the viscosity of BW1, BW2, BW3, and MXG decreased by 90.7, 93.3, 92.6, and 90.2%, respectively. The Arrhenius viscosity model, which has been commonly used to represent the temperature dependence of the viscosity of many fluids, did not fit the viscosity-temperature experimental data of all bio-oils very well, especially in the low- and high-temperature regions. For comparison, the Williams-Landel-Ferry (WLF) model was also used. The results showed that the WLF model gave a very good description of the viscosity-temperature relationship of each bio-oil with very small residuals and the BW3 bio-oil had the strongest viscosity-temperature dependence.