8 resultados para Antioxidant Status

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies indicate that regular consumption of a diet rich in fruits and vegetables is associated with a lower risk for age-related diseases. The aim of the present study was to evaluate whether the often-reported age-related decrease of plasma antioxidants in man depends on differences in dietary intake or on other age- and gender-related factors. In this observational case-control study, thirty-nine community-dwelling healthy subjects aged 65 years and older consuming high intakes of fruits and vegetables daily (HI) and forty-eight healthy subjects aged 65 and older consuming low intakes of fruit and vegetables daily (LI) were enrolled. Plasma levels of retinol, tocopherols, carotenoids and malondialdehyde (MDA) as well as content of protein carbonyls in Ig G were measured. Plasma levels of retinol, tocopherols and carotenoids were significantly higher in group HI than in group LI subjects independent of age and gender. MDA levels were inversely correlated with vitamin A and α-carotene. Protein carbonyls were inversely correlated with γ-tocopherol. In the elderly, a higher daily intake of fruits and vegetables is associated with an improved antioxidant status in comparison to subjects consuming diets poor in fruits and vegetables. Modification of nutritional habits among other lifestyle changes should be encouraged to lower prevalence of disease risk factors in later life. © The Authors 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large body of evidence supports a role of oxidative stress in Alzheimer disease (AD) and in cerebrovascular disease. A vascular component might be critical in the pathophysiology of AD, but there is a substantial lack of data regarding the simultaneous behavior of peripheral antioxidants and biomarkers of oxidative stress in AD and vascular dementia (VaD). Sixty-three AD patients, 23 VaD patients and 55 controls were included in the study. We measured plasma levels of water-soluble (vitamin C and uric acid) and lipophilic (vitamin E, vitamin A, carotenoids including lutein, zeaxanthin, β-cryptoxanthin, lycopene, α- and β-carotene) antioxidant micronutrients as well as levels of biomarkers of lipid peroxidation [malondialdehyde (MDA)] and of protein oxidation [immunoglobulin G (IgG) levels of protein carbonyls and dityrosine] in patients and controls. With the exception of β-carotene, all antioxidants were lower in demented patients as compared to controls. Furthermore, AD patients showed a significantly higher IgG dityrosine content as compared to controls. AD and VaD patients showed similar plasma levels of plasma antioxidants and MDA as well as a similar IgG content of protein carbonyls and dityrosine. We conclude that, independent of its nature - vascular or degenerative - dementia is associated with the depletion of a large spectrum of antioxidant micronutrients and with increased protein oxidative modification. This might be relevant to the pathophysiology of dementing disorders, particularly in light of the recently suggested importance of the vascular component in AD development. Copyright © 2004 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: A large body of evidence supports a role of oxidative stress in Alzheimer disease (AD) and in cerebrovascular disease. A vascular component might be critical in the pathophysiology of AD. Objective(s): To evaluate the simultaneous behavior of a broad spectrum of peripheral antioxidants and biomarkers of oxidative stress in AD and vascular dementia (VaD). Methods: Sixty-three AD patients, 23 VaD patients and 55 controls were included in the study. We measured plasma levels of water-soluble (vitamin C and uric acid) and lipophilic (vitamin E, vitamin A, carotenoids including lutein, zeaxanthin, [3-cryptoxanthin, lycopene, c~- and [3-carotene) antioxidant micronutrients as well as levels of biomarkers of lipid peroxidation [malondialdehyde (MDA)] and of protein oxidation [immunoglobniin G (Ig G) levels of protein carbonyls and dityrosine] in patients and controls. Results: AD and VaD patients showed significantly decreased plasma levels of the water-soluble vitamin C and uric acid, of the lipophilic vitamin Eand vitamin A, and of the carotenoids lutein, zeaxanthin, 13-cryptoxanthin, lycopene and (x-carotene as compared to controls; among biomarkers of oxidative stress, only the content of dityrosine in Ig G was found to be significantly higher (p < 0.01) in AD patients as compared to controls; although a trend towards higher levels of dityrosine was also observed in VaD subjects compared to controls (6.3 4- 1.7 ~M in VaD patients vs. 5.1 4- 1.6 IxM in controls; p = 0.06), it did not reach statistical significance. In a cumulative analysis of all patient samples, a significant inverse association was found between plasma lycopene and MDA levels (r = -0.53, p < 0.0001). Conclusions: Independent of its nature-vascular or degenerativedementia is associated with the depletion of a large spectrum of antioxidant micronutrients and with increased protein oxidative modification. This might be relevant to the pathophysiology of dementing disorders, particularly in light of the recently suggested importance of the vascular component in AD development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Eight otherwise healthy diabetic volunteers took a daily antioxidant supplement consisting of vitamin E (200 IU), vitamin C (250 mg) and α-lipoic acid (90 mg) for a period of 6 weeks. Diabetic dapsone hydroxylamine-mediated methaemoglobin formation and resistance to erythrocytic thiol depletion was compared with age and sex-matched non-diabetic subjects. At time zero, methaemoglobin formation in the non-diabetic subjects was greater at all four time points compared with that of the diabetic subjects. Resistance to glutathione depletion was initially greater in non-diabetic compared with diabetic samples. Half-way through the study (3 weeks), there were no differences between the two groups in methaemoglobin formation and thiol depletion in the diabetic samples was now lower than the non-diabetic samples at 10 and 20 min. At 6 weeks, diabetic erythrocytic thiol levels remained greater than those of non-diabetics. HbA1c values were significantly reduced in the diabetic subjects at 6 weeks compared with time zero values. At 10 weeks, 4 weeks after the end of supplementation, the diabetic HbA1c values significantly increased to the point where they were not significantly different from the time zero values. Total antioxidant status measurement (TAS) indicated that diabetic plasma antioxidant capacity was significantly improved during antioxidant supplementation. Conversion of α-lipoic acid to dihydrolipoic acid (DHLA) in vivo led to potent interference in a standard fructosamine assay kit, negating its use in this study. This report suggests that triple antioxidant therapy in diabetic volunteers attenuates the in vitro experimental oxidative stress of methaemoglobin formation and reduces haemoglobin glycation in vivo. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oxygen-derived free radicals are important agents of tissue injury during ischemia and reperfusion. The aim of this study was to investigate changes in protein and lipid oxidation and antioxidant status in beating heart coronary artery surgery and conventional bypass and to compare oxidative stress parameters between the two bypass methods. Serum lipid hydroperoxide, nitric oxide, protein carbonyl, nitrotyrosine, vitamin E, and β-carotene levels and total antioxidant capacity were measured in blood of 30 patients undergoing beating heart coronary artery surgery (OPCAB, off-pump coronary artery bypass grafting) and 12 patients undergoing conventional bypass (CABG, on-pump coronary artery bypass grafting). In the OPCAB group, nitric oxide and nitrotyrosine levels decreased after reperfusion. Similarly, β-carotene level and total antioxidant capacity also decreased after anesthesia and reperfusion. In the CABG group, nitric oxide and nitrotyrosine levels decreased after ischemia and reperfusion. However, protein carbonyl levels elevated after ischemia and reperfusion. Vitamin E, β-carotene, and total antioxidant capacity decreased after ischemia and reperfusion. Significantly decreased nitration and impaired antioxidant status were seen after reperfusion in both groups. Moreover, elevated protein carbonyls were found in the CABG group. The off-pump procedure is associated with lower degree of oxidative stress than on-pump coronary surgery. © 2011 Pleiades Publishing, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alzheimer’s disease is a neurodegenerative disorder which has been characterised with genetic (apolipoproteins), protein (ß-amyloid and tau) and lipid oxidation/metabolism alterations in its pathogenesis. In conjunction with the Dementia Research Group, Bristol University, investigation into genetic, protein and lipid oxidation in Alzheimer’s disease was conducted. A large sample cohort using the double-blind criteria, along with various clinical and chemical data sets were used to improve the statistical analysis and therefore the strength of this particular study. Bristol University completed genetic and protein analysis with lipid oxidation assays performed at Aston University. Lipid oxidation is a complex process that creates various biomarkers, from transient intermediates, to short carbon chain products and cyclic ring structures. Quantification of these products was performed on lipid extracts of donated clinical diseased and non-diseased frontal and temporal brain regions, from the Brain Bank within Frenchay Hospital. The initial unoxidised fatty acids, first transient oxidation intermediates the conjugated dienes and lipid hydroperoxides, the endpoint aldehyde biomarkers and finally the cyclic isoprostanes and neuroprostanes were determined to investigate lipid oxidation in Alzheimer’s. Antioxidant levels were also investigated to observe the effect of oxidation on the defence pathways. Assays utilised in this analysis included; fatty acid composition by GC-FID, conjugated diene levels by HPLC-UV and UV-spec, lipid hydroperoxide levels by FOX, aldehyde content by TBARs, antioxidant status by TEAC and finally isoprostane and neuroprostane quantification using a newly developed EI-MS method. This method involved the SIM of specific ions from F-ring isoprostane and neuroprostane fragmentation, which enabled EI-MS to be used for their quantification. Analyses demonstrated that there was no significant difference between control and Alzheimer samples across all the oxidation biomarkers for both brain regions. Antioxidants were the only marker that showed a clear variance; with Alzheimer samples having higher levels than the age matched controls. This unique finding is supported with the observed lower levels of lipid oxidation biomarkers in Alzheimer brain region samples. The increased antioxidant levels indicate protection against oxidation which may be a host response to counteract the oxidative pathways, but this requires further investigation. In terms of lipid oxidation, no definitive markers or target site for therapeutic intervention have been revealed. This study concludes that dietary supplementation of omega-3 fatty acids or antioxidants would most likely be ineffective against Alzheimer disease, although it may support improvement in other areas of general health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To determine the impact of periodontitis on oxidative/inflammatory status and diabetes control in Type 2 diabetes. Materials and Methods: A comparative study of 20 Type 2 diabetes patients with periodontitis [body mass index (BMI) 31+5], 20-age/gender-matched, non-periodontitis Type 2 diabetes controls (BMI 29+6) and 20 non-diabetes periodontitis controls (BMI 25+4) had periodontal examinations and fasting blood samples collected. Oxidative stress was determined by plasma small molecule antioxidant capacity (pSMAC) and protein carbonyl levels; inflammatory status by total/differential leucocytes, fibrinogen and high sensitivity C-reactive protein (hsCRP); diabetes status by fasting glucose, HbA1c, lipid profile, insulin resistance and secretion. Statistical analysis was performed using SPSS. Results: pSMAC was lower (p=0.03) and protein carbonyls higher (p=0.007) in Type 2 diabetes patients with periodontitis compared with those without periodontitis. Periodontitis was associated with significantly higher HbA1c (p=0.002) and fasting glucose levels (p=0.04) and with lower ß-cell function (HOMA-ß; p=0.01) in diabetes patients. Periodontitis had little effect on inflammatory markers or lipid profiles, but Type 2 diabetes patients with periodontitis had higher levels of hsCRP than those without diabetes (p=0.004) and the lowest levels of HDL-cholesterol of all groups. Conclusion: Periodontitis is associated with increased oxidative stress and compromised glycaemic control in Type 2 diabetes patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Peroxiredoxin-2 (PRDX-2) is an antioxidant and chaperone-like protein critical for cell function. This study examined whether the levels of lymphocyte PRDX-2 are altered over one month following ultra-endurance exercise. Methods: Nine middle-aged men undertook a single-stage, multi-day 233 km (145 mile) ultra-endurance running race. Blood was collected immediately before (PRE), upon completion/retirement (POST), and following the race at DAY 1, DAY 7 and DAY 28. Lymphocyte lysates were examined for PRDX-2 by reducing SDS-PAGE and western blotting. In a sub-group of men who completed the race (n = 4) PRDX-2 oligomeric state (indicative of redox status) was investigated. Results: Ultra-endurance exercise caused significant changes in lymphocyte PRDX-2 (F (4,32) 3.409, p=0.020, ?(2) =0.299): seven-days after the race, PRDX-2 levels in lymphocytes had fallen to 30% of pre-race values (p=0.013) and returned to near-normal levels at DAY 28. Non-reducing gels demonstrated that dimeric PRDX-2 (intracellular reduced PRDX-2 monomers) was increased in 3 of 4 race completers immediately post-race, indicative of an "antioxidant response". Moreover, monomeric PRDX-2 was also increased immediately post-race in 2 of 4 race-completing subjects, indicative of oxidative damage, which was not detectable by DAY 7. Conclusions: Lymphocyte PRDX-2 was decreased below normal levels 7 days after ultra-endurance exercise. Excessive accumulation of reactive oxygen species induced by ultra-endurance exercise may underlie depletion of lymphocyte PRDX-2 by triggering its turnover after oxidation. Low levels of lymphocyte PRDX-2 could influence cell function and might, in part, explain reports of dysregulated immunity following ultra-endurance exercise.