21 resultados para Antigen-presenting
em Aston University Research Archive
Resumo:
Introduction: The requirement of adjuvants in subunit protein vaccination is well known yet their mechanisms of action remain elusive. Of the numerous mechanisms suggested, cationic liposomes appear to fulfil at least three: the antigen depot effect, the delivery of antigen to antigen presenting cells (APCs) and finally the danger signal. We have investigated the role of antigen depot effect with the use of dual radiolabelling whereby adjuvant and antigen presence in tissues can be quantified. In our studies a range of cationic liposomes and different antigens were studied to determine the importance of physical properties such as liposome surface charge, antigen association and inherent lipid immunogenicity. More recently we have investigated the role of liposome size with the cationic liposome formulation DDA:TDB, composed of the cationic lipid dimethyldioctadecylammonium (DDA) and the synthetic mycobacterial glycolipid trehalose 6,6’-dibehenate (TDB). Vesicle size is a frequently investigated parameter which is known to result in different routes of endocytosis. It has been postulated that targeting different routes leads to different intracellular signaling pathway activation and it is certainly true that numerous studies have shown vesicle size to have an effect on the resulting immune responses (e.g. Th1 vs. Th2). Aim: To determine the effect of cationic liposome size on the biodistribution of adjuvant and antigen, the ensuing humoral and cell-mediated immune responses and the uptake and activation of antigen by APCs including macrophages and dendritic cells. Methods: DDA:TDB liposomes were made to three different sizes (~ 0.2, 0.5 and 2 µm) followed by the addition of tuberculosis antigen Ag85B-ESAT-6 therefore resulting in surface adsorption. Liposome formulations were injected into Balb/c or C57Bl/6 mice via the intramuscular route. The biodistribution of the liposome formulations was followed using dual radiolabelling. Tissues including muscle from the site of injection and local draining lymph nodes were removed and liposome and antigen presence quantified. Mice were also immunized with the different vaccine formulations and cytokine production (from Ag85B-ESAT-6 restimulated splenocytes) and antibody presence in blood assayed. Furthermore, splenocyte proliferation after restimulating with Ag85B-ESAT-6 was measured. Finally, APCs were compared for their ability to endocytose vaccine formulations and the effect this had on the maturation status of the cell populations was compared. Flow cytometry and fluorescence labelling was used to investigate maturation marker up-regulation and efficacy of phagocytosis. Results: Our results show that for an efficient Ag85B-ESAT-6 antigen depot at the injection site, liposomes composed of DDA and TDB are required. There is no significant change in the presence of liposome or antigen at 6hrs or 24hrs p.i, nor does liposome size have an effect. Approximately 0.05% of the injected liposome dose is detected in the local draining lymph node 24hrs p.i however protein presence is low (<0.005% dose). Preliminary in vitro data shows liposome and antigen endocytosis by macrophages; further studies on this will be presented in addition to the results of the immunisation study.
Resumo:
Adjuvants are often composed of different constituents that can be divided into two groups based on their primary activity: the delivery system which carries and presents the vaccine antigen to antigen-presenting cells, and the immunostimulator that activates and modulates the ensuing immune response. Herein, we have investigated the importance of the delivery system and in particular its physical characteristics by comparing the delivery properties of two lipids which differ only in the degree of saturation of the acyl chains, rendering the liposomes either rigid (DDA, dimethyldioctadecylammonium) or highly fluid (DODA, dimethyldioleoylammonium) at physiological temperature. We show that these delivery systems are remarkably different in their ability to prime a Th1-directed immune response with the rigid DDA-based liposomes inducing a response more than 100 times higher compared to that obtained with the fluid DODA-based liposomes. Upon injection with a vaccine antigen, DDA-based liposomes form a vaccine depot that results in a continuous attraction of antigen-presenting cells that engulf a high amount of adjuvant and are subsequently efficiently activated as measured by an elevated expression of the co-stimulatory molecules CD40 and CD86. In contrast, the fluid DODA-based liposomes are more rapidly removed from the site of injection resulting in a lower up-regulation of co-stimulatory CD40 and CD86 molecules on adjuvant-positive antigen-presenting cells. Additionally, the vaccine antigen is readily dissociated from the DODA-based liposomes leading to a population of antigen-presenting cells that are antigen-positive but adjuvant-negative and consequently are not activated. These studies demonstrate the importance of studying in vivo characteristics of the vaccine components and furthermore show that physicochemical properties of the delivery system have a major impact on the vaccine-induced immune response. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Vaccination remains a key tool in the protection and eradication of diseases. However, the development of new safe and effective vaccines is not easy. Various live organism based vaccines currently licensed, exhibit high efficacy; however, this benefit is associated with risk, due to the adverse reactions found with these vaccines. Therefore, in the development of vaccines, the associated risk-benefit issues need to be addressed. Sub-unit proteins offer a much safer alternative; however, their efficacy is low. The use of adjuvanted systems have proven to enhance the immunogenicity of these sub-unit vaccines through protection (i.e. preventing degradation of the antigen in vivo) and enhanced targeting of these antigens to professional antigen-presenting cells. Understanding of the immunological implications of the related disease will enable validation for the design and development of potential adjuvant systems. Novel adjuvant research involves the combination of both pharmaceutical analysis accompanied by detailed immunological investigations, whereby, pharmaceutically designed adjuvants are driven by an increased understanding of mechanisms of adjuvant activity, largely facilitated by description of highly specific innate immune recognition of components usually associated with the presence of invading bacteria or virus. The majority of pharmaceutical based adjuvants currently being investigated are particulate based delivery systems, such as liposome formulations. As an adjuvant, liposomes have been shown to enhance immunity against the associated disease particularly when a cationic lipid is used within the formulation. In addition, the inclusion of components such as immunomodulators, further enhance immunity. Within this review, the use and application of effective adjuvants is investigated, with particular emphasis on liposomal-based systems. The mechanisms of adjuvant activity, analysis of complex immunological characteristics and formulation and delivery of these vaccines are considered.
Resumo:
A hypothesis that a metal-induced immune disorder may be involved in the pathogenesis of some forms of Alzheimer's disease (AD) is presented. The classical complement pathway is activated in AD and T cells and reactive microglia appear in the brain. Studies of metal induced autoimmunity and the use of compounds containing aluminium as vaccine adjuvants suggest that metals can activate complement and can be taken up by antigen presenting cells. The consequent immune response could contribute to neuronal damage, beta-amyloid deposition and cell death. The strengths and weaknesses of this hypothesis are discussed and tests of some aspects are proposed.
Resumo:
In this project, antigen-containing microspheres were produced using a range of biodegradable polymers by single and double emulsion solvent evaporation and spray drying techniques. The proteins used in this study were mainly BSA, tetanus toxoid, F1 and V, Y. pestis subunit vaccines and the cytokine, interferon-gamma. The polymer chosen for use in the vaccine preparation will directly determine the characteristics of the formulation. Full in vitro analysis of the preparations was carried out, including surface hydrophobicity and drug release profiles. The influence of the surfactants employed on microsphere surface hydrophobicity was demonstrated. Preparations produced with polyhydroxybutyrate and poly(DTH carbonate) polymers were also shown to be more hydrophobic than PLA microspheres, which may enhance particle uptake by antigen presenting cells and Peyer's patches. Systematic immunisation with microspheres with a range of properties showed differences in the time course and extent of the immune response generated, which would allow optimisation of the dosing schedule to provide maximal response in a single dose preparation. Both systematic and mucosal responses were induced following oral delivery of microencapsulated tetanus toxoid indicating that the encapsulation of the antigen into a microsphere preparation provides protection in the gut and allows targeting of the mucosal-associated lymphoid tissue. Co-encapsulation of adjuvants for further enhancement of immune response was also carried out and the effect on loading and release pattern assessed. Co-encapsulated F1 and interferon-gamma was administered i.p. and the immune responses compared with singly encapsulated and free subunit antigen.
Resumo:
In this work peptide antigens [ESAT-6,p45 in water (1ml, 1mg/ml)] have been adsorbed onto 10mg inorganic substrates (hydroxyapatite (MHA P201;P120, CHA), polystyrene, calcium carbonate and glass microspheres) and in vitro release characteristics were determined. The aim of formulation was to enhance the interaction of peptides with antigen presenting cells and to achieve rapid peptide release from the carrier compartment system in a mildly acidic environment. Hydroxyapatite microparticle P201 has a greater surface area and thus has the largest peptide adsorption compared to the P120. CHA gave a further higher adsorption due to larger surface area than that available on microparticles. These particles were incorporated into the BOVIGAMTM assay to determine if they improve the sensitivity. After overnight incubation the blood plasma was removed and the amount of IFN-g in each plasma sample was estimated. CHA and MHA P201 gave a significantly higher immune response at low peptide concentration compared to the free peptide, thus indicating that these systems can be used to evaluate Tuberculosis (TB) amongst cattle using the BOVIGAMTM assay. Badgers are a source of TB and pass infection to cattle. At the moment vaccination against TB in badgers is via the parenteral route and requires a trained veterinary surgeon as well as catching the badgers. This process is expensive and time consuming; consequently an oral delivery system for delivery of BCG vaccines is easier and cheaper. The initial stage involved addition of various surfactants and suspending agents to disperse BCG and the second stage involved testing for BCG viability. Various copolymers of Eudragit were used as enteric coating systems to protect BCG against the acidic environment of the stomach (SGF, 0.1M HCl pH 1.2 at 37oC) while dissolving completely in the alkaline environment of the small intestine (SIF, IM PBS solution pH 7.4 at 37oC). Eudragit L100 dispersed in 2ml PBS solution and 0.9ml Tween 80 (0.1%w/v) gave the best results remaining intact in SGF loosing only approximately 10-15% of the initial weight and dissolving completely within 3 hours. BCG was incorporated within the matrix formulation adjusted to pH 7 at the initial formulation stage containing PBS solution and Tween 80. It gave viability of x106 cfu/ml at initial formulation stage, freezing and freeze-drying stages. After this stage the matrix was compressed at 4 tons for 3 mins and placed in SGF for 2 hours and then in SIF until dissolved. The BCG viability dropped to x106 cfu/ml. There is potential to develop it further for oral delivery of BCG vaccine.
Resumo:
In recent years, much interest has focused on the significance of inducing not only systemic immunity but also good local immunity at susceptible mucosal surfaces. A new field of mucosal immunity has been established as information accumulates on gut-associated lymphoid tissue, bronchus-associated lymphoid tissue and nasal-associated lymphoid tissue (GALT, BALT and NALT, respectively) and on their role in both local and systemic immune responses. This project, following the line of investigation started by other workers, was designed to study the use of microspheres to deliver antigens by the mucosal routes (oral and nasal). Antigen-containing microspheres were prepared with PLA and PLGA, by either entrapment within the particles or adsorption onto the surface. The model protein antigens used in this work were mainly tetanus toxoid (TT), bovine serum albumin (BSA) and γ-globulins.In vitro investigations included the study of physicochemical properties of the particulate carriers as well as the assessment of stability of the antigen molecules throughout the formulation procedures. Good loading efficiencies were obtained with both formulation techniques, which did not affect the immunogenicity of the antigens studied. The influence of the surfactant employed on the microspheres' surface properties was demonstrated as well as its implications on the adsorption of proteins. Preparations containing protein adsorbed were shown to be slightly more hydrophobic than empty PLA microspheres, which can enhance the uptake of particles by the antigen presenting cells that prefer to associate with hydrophobic surfaces. Systemic and mucosal immune responses induced upon nasal, oral and intramuscular administration have been assessed and, when appropriate, compared with the most widely used vaccine adjuvant, aluminium hydroxide. The results indicate that association of TT with PLA microspheres through microencapsulation or adsorption procedures led to an enhancement of specific mucosal IgA and IgG and systemic IgG responses to the mucosal delivered antigens. Particularly, nasal administration of TT produced significantly higher serum levels of specific IgG in test animals, as compared to control groups, suggesting that this is a potential route for vaccination. This implies the uptake and transfer of particles through the nasal mucosa, which was further demonstrated by the presence in the blood stream of latex particles as early as 10 min after nasal administration.
Resumo:
Liposomes remain at the forefront of vaccine design due to their well documented abilities to act as delivery vehicles and adjuvants. Liposomes have been described to initiate an antigen depot-effect, thereby increasing antigen exposure to circulating antigen-presenting cells. More recently, in-depth reviews have focussed on inherent immunostimulatory abilities of various cationic lipids, the use of which is consequently of interest in the development of subunit protein vaccines which when delivered without an adjuvant are poorly immunogenic. The importance of liposomes for the mediation of an antigen depot-effect was examined by use of a dual-radiolabelling technique thereby allowing simultaneous detection of liposomal and antigenic components and analysis of their pharmacokinetic profile. In addition to investigating the biodistribution of these formulations, their physicochemical properties were analysed and the ability of the various liposome formulations to elicit humoral and cell-mediated immune responses was investigated. Our results show a requirement of cationic charge and medium/strong levels of antigen adsorption to the cationic liposome in order for both a liposome and antigen depot-effect to occur at the injection site. The choice of injection route had little effect on the pharmacokinetics or immunogenicity observed. In vitro, cationic liposomes were more cytotoxic than neutral liposomes due to significantly enhanced levels of cell uptake. With regards to the role of bilayer fluidity, liposomes expressing more rigid bilayers displayed increased retention at the injection site although this did not necessarily result in increased antigen retention. Furthermore, liposome bilayer rigidity did not necessarily correlate with improved immunogenicity. In similar findings, liposome size did not appear to control liposome or antigen retention at the injection site. However, a strong liposome size correlation between splenocyte proliferation and production of IL-10 was noted; specifically immunisation with large liposomes lead to increased levels of splenocyte proliferation coupled with decreased IL-10 production.
Resumo:
The immunostimulatory capacities of cationic liposomes are well-documented and are attributed both to inherent immunogenicity of the cationic lipid and more physical capacities such as the formation of antigen depots and antigen delivery. Very few studies have however been conducted comparing the immunostimulatory capacities of different cationic lipids. In the present study we therefore chose to investigate three of the most well-known cationic liposome-forming lipids as potential adjuvants for protein subunit vaccines. The ability of 3ß-[N-(N',N'-dimethylaminoethane)carbomyl] cholesterol (DC-Chol), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), and dimethyldioctadecylammonium (DDA) liposomes incorporating immunomodulating trehalose dibehenate (TDB) to form an antigen depot at the site of injection (SOI) and to induce immunological recall responses against coadministered tuberculosis vaccine antigen Ag85B-ESAT-6 are reported. Furthermore, physical characterization of the liposomes is presented. Our results suggest that liposome composition plays an important role in vaccine retention at the SOI and the ability to enable the immune system to induce a vaccine specific recall response. While all three cationic liposomes facilitated increased antigen presentation by antigen presenting cells, the monocyte infiltration to the SOI and the production of IFN-? upon antigen recall was markedly higher for DDA and DC-Chol based liposomes which exhibited a longer retention profile at the SOI. A long-term retention and slow release of liposome and vaccine antigen from the injection site hence appears to favor a stronger Th1 immune response.
Resumo:
Liposomes offer an ideal platform for the delivery of subunit vaccines, due to their versatility and flexibility, which allows for antigen as well as immunostimulatory lipids and TLR agonists to become associated with these bilayered vesicles. Liposomes have the ability to protect vaccine antigen, as well as enhance delivery to antigen presenting cells, whilst the importance of cationic surface charge for delivery of TB subunit vaccines and formation of an ‘antigen depot’ may play a key role in boosting cell-mediated immunity and Th1 immune responses. The rational design of vaccine adjuvants requires the thorough investigation into the physicochemical characteristics that dictate the function of a liposomal adjuvant. Within this thesis, physicochemical characteristics were investigated in order to show any effects on the biodistribution profiles and the ensuing immune responses of these formulations. Initially the role of liposome charge within the formulation was investigated and subsequently their efficacy as vaccine adjuvants in combination with their biodistribution was measured to allow the role of formulation in vaccine function to be considered. These results showed that cationic surface charge, in combination with high loading of H56 vaccine antigen through electrostatic binding, was crucial in the promotion of the ‘depot-effect’ at the injection site which increases the initiation of Th1 cell-mediated immune responses that are required to offer protection against tuberculosis. To further investigate this, different methods of liposome production were also investigated where antigen incorporation within the vesicles as well as surface adsorption were adopted. Using the dehydration-rehydration (DRV) method (where liposomes are freeze-dried in the presence of antigen to promote antigen encapsulation) and the double emulsion (DE) method, a range of liposomes entrapping antigen were formulated. Variation in the liposome preparation method can lead to antigen entrapment within the delivery system which has been shown to be greater for DRV-formulated liposomes compared to their DE-counterparts. This resulted in no significant effect on the vaccine biodistribution profile, as well as not significantly altering the efficacy of cationic liposomal adjuvants. To further enhance the efficacy of these systems, the addition of TLR agonists either at the vesicle surface as well as within the delivery system has been displayed through variation in the preparation method. Anionic liposomal adjuvants have been formulated, which displayed rapid drainage from the injection site to the draining lymph nodes and displayed a reduction in measured Th1 immune responses. However, variation in the preparation method can alter the immune response profile for anionic liposomal adjuvants with a bias in immune response to Th2 responses being noted. Through the use of high shear mixing and stepwise incorporation, the efficient loading of TLR agonist within liposomes has been shown. However, interestingly the conjugation between lipid and non-electrostatically bound TLR agonist, followed by insertion into the bilayer of DDA/TDB resulted in localised agonist retention at the injection site and further stimulation of the Th1 immune response at the SOI, spleen and draining lymphatics as well as enhanced antibody titres.
Resumo:
In our attempts to thwart the unwanted attentions of microbes by prophylactic and therapeutic vaccination, the knowledge of interactions at the molecular level may prove to be an invaluable asset. This article examines how particulate delivery systems such as liposomes and polymer microspheres can be applied in the light of recent advances in immunological understanding. Some of the biological interactions of these delivery systems are discussed with relevance for antigen trafficking and molecular pathways of immunogenicity and emphasis on the possible interaction of liposomal components. In particular, traditional concepts such as antigen protection, delivery to antigen presenting cells and depot formation remain important aspects, whilst the inclusion of selected co-adjuvants and enhanced delivery of these moieties in conjunction with antigen now has a firm rationale. © 2006 The Authors.
Resumo:
Intramuscular injection of naked plasmid DNA is known (1-3) to elicit humoral and cell-mediated immune responses against the encoded antigen. It is thought (2,3) that immunity follows DNA uptake by muscle cells, leading to the expression and extracellular release of the antigen which is then taken up by antigen presenting cells (APC). In addition, it is feasible that some of the injected DNA is taken up directly by APC. Disadvantages (1-3) of naked DNA vaccination include: uptake of DNA by only a minor fraction of muscle cells, exposure of DNA to deoxyribonuclease in the interstitial fluid thus necessitating the use of relatively large quantities of DNA, and, in some cases, injection into regenerating muscle in order to enhance immunity. We have recently proposed (1,4) that DNA immunization via liposomes (phospholipid vesicles) could circumvent the need of muscle involvement and instead facilitate (5) uptake of DNA by APC infiltrating the site of injection or in the lymphatics, at the same time protecting DNA from nuclease attack (6). Moreover, transfection of APC with liposomal DNA could be promoted by the judicial choice of vesicle surface charge, size and lipid composition, or by the co-entrapment, together with DNA, of plasmids expressing appropriate cytokines (e.g., interleukin 2), or immunostimulatory sequences.
Resumo:
Vaccines remain a key tool in the defence against major diseases. However, in the development of vaccines a trade off between safety and efficacy is required with newer vaccines, based on sub-unit proteins and peptides, displaying improved safety profiles yet suffering from low efficacy. Adjuvants can be employed to improve their potency, but currently there are only a limited number of adjuvant systems licensed for clinical use. Of the new adjuvants being investigated, particulate systems offer several advantages including: passive targeting to the antigen-presenting cells within the immune system, protection against adjuvant degradation, and ability for sustained antigen release. There has been a range of particulate vaccine delivery systems outlined in recent patents including polymer-based microspheres (which are generally more focused on the use of synthetic polymers, in particular the polyesters) and surfactant-based vesicles. Within these formulations, several patented systems are exploiting the use of cationic lipids which, despite their limitations in gene therapy, clearly offer strong potential as adjuvants. Within this review, the current range of particulate system technologies being investigated as potential adjuvants are discussed with regard to both their respective advantages and the potential hurdles which must be overcome for such systems to be converted into successful pharmaceutical products.
Resumo:
Cationic liposomes have been extensively explored for their efficacy in delivering nucleic acids, by offering the ability to protect plasmid DNA against degradation, promote gene expression and, in the case of DNA vaccines, induce both humoural and cellular immune responses. DNA vaccines may also offer advantages in terms of safety, but they are less effective and need an adjuvant to enhance their immunogenicity. Therefore, cationic liposomes can be utilised as delivery systems and/or adjuvants for DNA vaccines to stimulate stronger immune responses. To explore the role of liposomal systems within plasmid DNA delivery, parameters such as the effect of lipid composition, method of liposome preparation and presence of electrolytes in the formulation were investigated in characterisation studies, in vitro transfection studies and in vivo biodistribution and immunisation studies. Liposomes composed of 1,2-dioleoyl-sn-glycero 3-phosphoethanolamine (DOPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3- trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method and hydrated in aqueous media with or without presence of electrolytes. Whilst the in vitro transfection efficiency of all liposomes resulted to be higher than Lipofectin, DSTAP-based liposomes showed significantly higher transfection efficiency than DOTAP-based formulations. Furthermore, upon intramuscular injection of liposomal DNA vaccines, DSTAP-based liposomes showed a significantly stronger depot effect at the injection site. This could explain the result of heterologous immunisation studies, which revealed DSTAP-based liposomal vaccines induce stronger immune responses compared to DOTAP-based formulations. Previous studies have shown that having more liposomally associated antigen at the injection site would lead to more drainage of them into the local lymph nodes. Consequently, this would lead to more antigens being presented to antigen presenting cells, which are circulating in lymph nodes, and this would initiate a stronger immune response. Finally, in a comparative study, liposomes composed of dimethyldioctadecylammonium bromide (DDA) in combination with DOPE or immunostimulatory molecule of trehalose 6,6-dibehenate (TDB) were prepared and investigated in vitro and in vivo. Results showed that although DDA:TDB is not able to transfect the cells efficiently in vitro, this formulation induces stronger immunity compared to DDA:DOPE due to the immunostimulatory effects of TDB. This study demonstrated, while the presence of electrolytes did not improve immune responses, small unilamellar vesicle (SUV) liposomes induced stronger humoural immune responses compared to dehydration rehydration vesicle (DRV) liposomes. Moreover, lipid composition was shown to play a key role in in vitro and in vivo behaviour of the formulations, as saturated cationic lipids provided stronger immune responses compared to unsaturated lipids. Finally, heterologous prime/boost immunisation promoted significantly stronger immune responses compared to homologous vaccination of DNA vaccines, however, a single immunisation of subunit vaccine provoked comparable levels of immune response to the heterologous regimen, suggesting more immune efficiency for subunit vaccines compared to DNA vaccines.
Resumo:
A range of particulate delivery systems have been considered as vaccine adjuvants. Of these systems, liposomes offer a range of advantages including versatility and flexibility in design format and their ability to incorporate a range of immunomodulators and antigens. Here we briefly outline research, from within our laboratories, which focused on the systematic evaluation of cationic liposomes as vaccines adjuvants. Our aim was to identify physicochemical characteristics that correlate with vaccine efficacy, with particular consideration of the interlink between depot-forming action and immune responses. A variety of parameters were investigated and over a range of studies we have confirmed that cationic liposomes, based on dimethyldioctadecylammonium bromide and trehalose 6,6'-dibehenate formed a depot at the injection site, which stimulates recruitment of antigen presenting cells to the injection site and promotes strong humoral and cell-mediated immune responses. Physicochemical factors which promote a strong vaccine depot include the combination of a high cationic charge and electrostatic binding of the antigen to the liposome system and the use of lipids with high transition temperatures, which form rigid bilayer vesicles. Reduction in vesicle size of cationic vesicles did not promote enhanced drainage from the injection site. However, reducing the cationic nature through substitution of the cationic lipid for a neutral lipid, or by masking of the charge using PEGylation, resulted in a reduced depot formation and reduced Th1-type immune responses, while Th2-type responses were less influenced. These studies confirm that the physicochemical characteristics of particulate-based adjuvants play a key role in the modulation of immune responses.