17 resultados para Anti-restenotic Agent
em Aston University Research Archive
Resumo:
Azidoprofen {2-(4-azidophenyl)propionic acid; AZP}, an azido-substituted arylalkanoic acid, was investigated as a model soft drug candidate for a potential topical non-steroidal anti-inflammatory agent (NSAIA). Reversed-phase high performance liquid chromatography (HPLC) methods were developed for the assay of AZP, a series of ester analogues and their· degradation products. 1H-NMR spectroscopy was also employed as an analytical method in selected cases. Reduction of the azido-group to the corresponding amine has been proposed as a potential detoxification mechanism for compounds bearing this substituent. An in vitro assay to measure the susceptibility of azides towards reduction was developed using dithiothreitol as a model reducing agent. The rate of reduction of AZP was found to be base-dependent, hence supporting the postulated mechanism of thiol-mediated reduction via nucleophilic attack by the thiolate anion. Prodrugs may enhance topical bioavailability through the manipulation of physico-chemical properties of the parent drug. A series of ester derivatives of AZP were investigated for their susceptibility to chemical and enzymatic hydrolysis, which regenerates the parent acid. Use of alcoholic cosolvents with differing alkyl functions to that of the ester resulted in transesterification reactions, which were found to be enzyme-mediated. The skin penetration of AZP was assessed using an in vitro hairless mouse skin model, and silastic membrane in some cases. The rate of permeation of AZP was found to be a similar magnitude to that of the well established NSAIA ibuprofen. Penetration rates were dependent on the vehicle pH and drug concentration when solutions were employed. In contrast, flux was independent of pH when suspension formulations were used. Pretreatment of the skin with various enhancer regimes, including oleic acid and azone in propylene glycol, promoted the penetration of AZP. An intense IR absorption due to the azide group serves as a highly diagnostic marker, enabling azido compounds to be detected in the outer layers of the· stratum corneum following their application to skin, using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). This novel application enabled a non-invasive examination of the percutaneous penetration enhancement of a model azido compound in vivo in man, in the presence of the enhancer oleic acid.
Resumo:
The medicinal qualities of pineapple are recognized in many traditions in South America, China and Southeast Asia. These qualities are attributed to bromelain, a 95%-mixture of proteases. Medicinal qualities of bromelain include anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Existing evidence derived from clinical observations as well as from mouse- and cell-based models suggests that bromelain acts systemically, affecting multiple cellular and molecular targets. In recent years, studies have shown that bromelain has the capacity to modulate key pathways that support malignancy. It is now possible to suggest that the anti-cancer activity of bromelain consists in the direct impact on cancer cells and their micro-environment, as well as in the modulation of immune, inflammatory and haemostatic systems. This review will summarize existing data relevant to bromelain's anti-cancer activity and will suggest mechanisms which account for bromelain's effect, in the light of research involving non-cancer models. The review will also identify specific new research questions that will need to be addressed in order for a full assessment of bromelain-based anti-cancer therapy.
Resumo:
A series of antioxidants was used to explore the cytotoxicity of one particularly toxic antimycobacterial 2-pyridylcarboxamidrazone anti-tuberculosis agent against human mononuclear leucocytes (MNL), in comparison with isoniazid (INH) to aid future compound design. INH caused a significant reduction of nearly 40% in cell recovery compared with control (P < 0.0001), although the co-incubation with either glutathione (GSH, 1 mM) or (NAC, 1 mM) showed abolition of INH toxicity. In contrast, the addition of GSH or NAC 1 h after INH failed to protect the cells from INH toxicity (P < 0.0001). The 2-pyridyl-carboxamidrazone 'Compound 1' caused a 50% reduction in cell recovery compared with control (P < 0.001), although this was abolished by the presence of either GSH or NAC. A 1 h post incubation with either NAC or GSH after Compound 1 addition failed to protect the cells from toxicity (P < 0.001). Co-administration of lipoic acid (LA) abolished Compound 1-mediated toxicity, although again, this effect did not occur after LA addition 1 h post incubation with Compound 1 (P < 0.001). However, co-administration of dihydrolipoic acid (DHLA) prevented Compound 1-mediated cell death when incubated with the compound and also after 1 h of Compound 1 alone. Pre-treatment with GSH, then removal of the antioxidant resulted in abolition of Compound 1 toxicity (vehicle control, 63.6 ± 16.7 versus Compound 1 alone 26.1 ± 13.6% versus GSH pre-treatment, 65.7 ± 7.3%). In a cell-free incubation, NMR analysis revealed that GSH does not react with Compound 1, indicating that this agent is not likely to directly deplete membrane thiols. Compound 1's MNL toxicity is more likely to be linked with changes in cell membrane conformation, which may induce consequent thiol depletion that is reversible by exogenous thiols. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The introduction of anti-vascular endothelial growth factor (anti-VEGF) has made significant impact on the reduction of the visual loss due to neovascular age-related macular degeneration (n-AMD). There are significant inter-individual differences in response to an anti-VEGF agent, made more complex by the availability of multiple anti-VEGF agents with different molecular configurations. The response to anti-VEGF therapy have been found to be dependent on a variety of factors including patient’s age, lesion characteristics, lesion duration, baseline visual acuity (VA) and the presence of particular genotype risk alleles. Furthermore, a proportion of eyes with n-AMD show a decline in acuity or morphology, despite therapy or require very frequent re-treatment. There is currently no consensus as to how to classify optimal response, or lack of it, with these therapies. There is, in particular, confusion over terms such as ‘responder status’ after treatment for n-AMD, ‘tachyphylaxis’ and ‘recalcitrant’ n-AMD. This document aims to provide a consensus on definition/categorisation of the response of n-AMD to anti-VEGF therapies and on the time points at which response to treatment should be determined. Primary response is best determined at 1 month following the last initiation dose, while maintained treatment (secondary) response is determined any time after the 4th visit. In a particular eye, secondary responses do not mirror and cannot be predicted from that in the primary phase. Morphological and functional responses to anti-VEGF treatments, do not necessarily correlate, and may be dissociated in an individual eye. Furthermore, there is a ceiling effect that can negate the currently used functional metrics such as >5 letters improvement when the baseline VA is good (ETDRS>70 letters). It is therefore important to use a combination of both the parameters in determining the response.The following are proposed definitions: optimal (good) response is defined as when there is resolution of fluid (intraretinal fluid; IRF, subretinal fluid; SRF and retinal thickening), and/or improvement of >5 letters, subject to the ceiling effect of good starting VA. Poor response is defined as <25% reduction from the baseline in the central retinal thickness (CRT), with persistent or new IRF, SRF or minimal or change in VA (that is, change in VA of 0+4 letters). Non-response is defined as an increase in fluid (IRF, SRF and CRT), or increasing haemorrhage compared with the baseline and/or loss of >5 letters compared with the baseline or best corrected vision subsequently. Poor or non-response to anti-VEGF may be due to clinical factors including suboptimal dosing than that required by a particular patient, increased dosing intervals, treatment initiation when disease is already at an advanced or chronic stage), cellular mechanisms, lesion type, genetic variation and potential tachyphylaxis); non-clinical factors including poor access to clinics or delayed appointments may also result in poor treatment outcomes. In eyes classified as good responders, treatment should be continued with the same agent when disease activity is present or reactivation occurs following temporary dose holding. In eyes that show partial response, treatment may be continued, although re-evaluation with further imaging may be required to exclude confounding factors. Where there is persistent, unchanging accumulated fluid following three consecutive injections at monthly intervals, treatment may be withheld temporarily, but recommenced with the same or alternative anti-VEGF if the fluid subsequently increases (lesion considered active). Poor or non-response to anti-VEGF treatments requires re-evaluation of diagnosis and if necessary switch to alternative therapies including other anti-VEGF agents and/or with photodynamic therapy (PDT). Idiopathic polypoidal choroidopathy may require treatment with PDT monotherapy or combination with anti-VEGF. A committee comprised of retinal specialists with experience of managing patients with n-AMD similar to that which developed the Royal College of Ophthalmologists Guidelines to Ranibizumab was assembled. Individual aspects of the guidelines were proposed by the committee lead (WMA) based on relevant reference to published evidence base following a search of Medline and circulated to all committee members for discussion before approval or modification. Each draft was modified according to feedback from committee members until unanimous approval was obtained in the final draft. A system for categorising the range of responsiveness of n-AMD lesions to anti-VEGF therapy is proposed. The proposal is based primarily on morphological criteria but functional criteria have been included. Recommendations have been made on when to consider discontinuation of therapy either because of success or futility. These guidelines should help clinical decision-making and may prevent over and/or undertreatment with anti-VEGF therapy.
Resumo:
The hepatotoxicity of the industrial solvent and investigational anti-tumour agent N-methylformamide (NMF, HOCNHCH3) and several structural analogues was assessed in mice. NMF and its ethyl analogue (NEF) were equipotent hepatotoxins causing extensive centrilobular necrosis and damage to the gall bladder. Pretreatment of mice with SKF525A did not influence the toxicity of these N-alkylformamides. Replacement of the formyl hydrogen of NMF with deuterium or methyl significantly reduced its hepatotoxicity. An in vitro model for the study of the toxicity and metabolism of N-alkylformamides was developed using isolated mouse hepatocytes. The cytotoxicity of NMF in vitro was concentration-dependent with maximal toxicity being achieved at concentrations of 5mM or above. The cytotoxic potential of related amides correlated well with their in vivo hepatotoxic potential. Pretreatment of mice with buthionine sulphoximine (BSO), which depleted hepatocytic levels of glutathione to 15% of control values, exacerbated the cytotoxicity of NMF towards the hepatocytes. NMF (1mM or above), incubated with isolated mouse hepatocytes, depleted intracellular glutathione levels to 26% of control values within 4h. Depletion of glutathione was quantitatively matched by the formation of a carbamoylating metabolite. Metabolism was dependent on the concentration of NMF and was drastically reduced in incubations of hepatocytes isolated from mice pretreated with BSO. The carbamoylating metabolite, S-(N-methylcarbamoyl)-glutathione (SMG), was identified in vitro using FAB-MS. The generation of SMG was subject to a large primary H/D kinetic isotope effect when the formyl hydrogen was replaced with deuterium. Likewise, glutathione depletion and metabolite formation were reduced or abolished by the deuteration or methylation of the formyl moiety of NMF. NEF, like NMF, depleted hepatocytic glutathione levels and was metabolised to a carbamoylating metabolite. Radioactivity derived from 14C-NMF and 14C-NEF, labelled in the alkyl moieties, was found to be irreversibly associated with microsomal protein on incubation in vitro. Binding was dependent on the presence of NADPH and was mostly abolished in the presence of reduced glutathione. SKF525A failed to influence the binding.
Resumo:
AIDS dementia complex is a common neurological syndrome thought to result from the invasion of the CNS by HIV. Phosphonoformate has anti-HIV activity but due to its charged nature is excluded from the CNS by the blood-brain barrier. Lipophilic triesters of phosphonoformate designed to improve transport properties are unsuitable prodrugs due to their rapid and complicated hydrolysis, involving competitive P-O and P-C bond cleavage. Diesters, though hydrolytically stable, are considered too polar to passively diffuse into the CNS. Hydrophilic drugs mimicking endogenous nutrients are known to be actively transported across the blood-brain barrier. In this thesis the possibility that diesters of phosphonoformate may be actively transported is investigated. Triesters of phosphonoformate with labile aryl carboxyl esterrs were synthesised and their hydrolysis followed by 31P NMR spectroscopy. The triesters were found to undergo rapid hydrolysis via P-C bond cleavage to the phosphite. Phosphonoformate diesters designed to be analogues of actively transported -keto acids have been synthesised and fully characterised. Tyrosine-phosphonoformate and lipid-phosphonoformate conjugates have also been synthesised and characterised. An in vitro model of the blood-brain barrier utilising confluent monolayers of porcine brain microvessel endothelial cells grown on a permeable support has been established. The presence of enzyme and antigen markers specific to the blood-brain barrier has been demonstrated for the endothelial cells and the diffusional properties of the model investigated with hydrophilic and lipophilic compounds. Active transport systems for -keto acids and large amino acids have been identified in the endothelial cell monolayers using 14C-pyruvate and 3H-L-tyrosine respectively. Temperature and concentration dependence of the two systems have been demonstrated and transport constants calculated. Competition with 14C-pyruvate transport was shown with other monocarboxylic acids including the anti-epileptic drug valproate. Stereospecificity was shown in that L-lactate inhibited pyruvate transport while D-lactate did not. Sodium methyl methoxycarbonylphosphonate, a phosphonoformate diester was shown not to compete for 14C-pyruvate transport indicating that this compound has no affinity for the carrier. Competition with 3H-L-tyrosine transport was shown with other large amino acids, including the anti-Parkinsonian agent L-dopa. Stereospecificity was shown using L- and D-tyrosine and L- and D-dopa. The tyrosine-phosphonoformate conjugate, which was stable under the experimental conditions, was shown to compete with 3H-Ltyrosine transport indicating that it may be actively transported at the blood-brain barrier. Thirty two triesters, diesters and monoesters of phosphonoformate, showed no activity in an anti-HIV screen above that attributable to hydrolysis to the parent compound.
Resumo:
A transplantable murine colon adenocarcinoma (MAC16) was utilised as a model of human cancer cachexia. This tumour has been found to produce extensive weight loss, characterised by depletion of host body protein and lipid stores at a small tumour burden. This weight loss has been found to be associated with production by the tumour of a lipolytic factor, activity of which was inhibited in vitro by the polyunsaturated fatty acid (PUFA) eicosapentaenoic acid (EPA). EPA has also been shown to possess anti-tumour and anti-cachectic activity in vivo, leading to the hypothesis that fatty acids mobilised by the lipolytic factor supply a growth requirement of the MAC16 tumour. In this study mobilisation and sequestration of fatty acids by the tumour was found to be non-specific, although a relationship between weight loss and arachidonic acid (AA) concentration was found in both tumour-bearing mice, and human cancer patients. The anti-tumour effect of EPA, which was found to be associated with an increase in cell loss, but not its anti-cachectic activity, was reversed by the administration of the PUFAs oleic acid (OA) and linoleic acid (LA). LA was also found to be capable of stimulating tumour growth. Inhibition of either the cyclooxygenase or lipoxygenase pathways was found to result in reduction of tumour growth, leading to the implication of one of the metabolites of LA or AA in tumour growth and cachexia. The ethyl ester of EPA was found to be inactive against the growth and cachexia of the MAC16 tumour, due to its retarded uptake compared with the free acid. The anti-proliferative agent 5-fluorouracil was found to cause tumour growth inhibition, and when given in combination with EPA, reduced the phase of tumour regrowth observed after 4 to 5 days of treatment with EPA.
Resumo:
Using ionspray tandem mass spectrometry the glutathione conjugate SMG was identified as a biliary metabolite of DMF in rats (0.003% of a dose of 5OOmg/kg DMF i.p.). Formation of this metabolite was increased five fold after induction of CYP2E1 by acetone, and was inhibited to 20% of control values following pretreatment with disulfrram. Generation of SMG from DMF in vivo was shown to exhibit a large kinetic deuterium isotope effect (KWKD=10.1 ± 1.3), which most likely represents the product of 2 discrete isotope effects on N-demethylation and formyl oxidation reactions.The industrial solvent N,N-dimethylformamide (DMF) and the investigational anti-tumour agent N-methylformamide (NMF) cause liver damage in rodents and humans. The hepatotoxicity of N-alkylformamides is linked to their metabolism to N-alkylcarbamic acid thioesters. The enzymatic details of this pathway were investigated. Hepatocytes isolated from BALB/c mice which had been pretreated with acetone, an inducer of the cytochrome P-450 isozyme CYP2E1, were incubated with NMF (10mM). NMF caused extensive toxicity (> 90% ) as determined by lactate dehydrogenase (LDH) release, compared to cells from untreated animals. Incubation of liver cells with NMF for 6 hrs caused 60±17% LDH release whilst in the presence of DMSO (10mM), an alternative substrate for CYP2E1, LDH release was reduced to 20±10% . The metabolism of NMF to S-(N-methylcarbamoyl)glutathione (SMG) was measured in incubates with liver microsomes from mice, rats or humans. Metabolism of NMF was elevated in microsomes isolated from rats and mice pretreated with acetone, by 339% and 183% respectively. Pretreatment of animals with 4-methylpyrazole induced the metabolism of NMF to 280% by rat microsomes, but was without effect on NMF metabolism by mouse microsomes. The CYP2E1 inhibitors or alternative substrates diethyl dithiocarbamate (DEDTC), p-nitrophenol (PNP) and dimethyl sulphoxide (DMSO) strongly inhibited the metabolism of NMF in suspensions of rat liver microsomes, at concentrations which did not effect aminopyrine N-demethylation. The rate of metabolism of NMF to SMG in human microsomes correlated (r> 0.8) with the rate of metabolism of chlorzoxazone, a CYP2E1 probe. A polyclonal antibody against rat CYP2E1 (10mg/nmol P-450) inhibited NMF metabolism in microsomes from rats and humans by 75% and 80% , respectively. The amount of immunoblottable enzyme in human microsomes, determined using an anti-rat CYP2E1 antibody, correlated with the rate of NMF metabolism (r> 0.8). Purified rat CYP2E1 catalysed the generation of SMG from NMF. Formation of the DMF metabolite N-hydroxymethyl-N-methylformamide (HMMF) in incubations with rat liver microsomes was elevated by 200% following pretreatment of animals with acetone. Co-incubation with DEDTC (100μM) inhibited HMMF generation from DMF by 88% . Co-incubation of DMF (10mM) with NMF (1mM) inhibited the formation of SMG by 95% . A polyclonal antibody against rat CYP2E1 (10mg/nmol P-450) inhibited generation of HMMF in incubates with rat and human liver microsomes by 68.4% and 67.5% , respectively. Purified rat CYP2E1 catalysed the generation of HMMF from DMF. Using ionspray tandem mass spectrometry the glutathione conjugate SMG was identified as a biliary metabolite of DMF in rats (0.003% of a dose of 5OOmg/kg DMF i.p.). Formation of this metabolite was increased five fold after induction of CYP2E1 by acetone, and was inhibited to 20% of control values following pretreatment with disulfrram. Generation of SMG from DMF in vivo was shown to exhibit a large kinetic deuterium isotope effect (KHKD=10.1 ± 1.3), which most likely represents the product of 2 discrete isotope effects on N-demethylation and formyl oxidation reactions.
Resumo:
Metformin is an anti-hyperglycaemic agent widely used in the treatment of type 2 diabetes. It counters insulin resistance through insulin-dependent and -independent effects on cellular nutrient and energy metabolism, improving glycaemic control without weight gain and without increasing the risk of hypoglycaemia. Metformin can also benefit several risk factors for vascular disease independently of glycaemic control. In subjects with metabolic syndrome, metformin improves prognosis. It decreases progression of impaired glucose tolerance to type 2 diabetes, assists weight reduction especially in conjunction with lifestyle management and exerts other potentially favourable cardiovascular effects. For example, metformin can modestly improve the lipid profile in some dyslipidaemic individuals, reduce pro-inflammatory cytokines and monocyte adhesion molecules and decrease advanced glycation end products. Metformin can also improve parameters of endothelial function in the macro- and micro-vasculature, indicating lower athero-thrombotic risk, but it does not appear to reduce blood pressure. In normoglycaemic individuals with risk factors for diabetes and in women with polycystic ovary syndrome there is evidence that metformin can defer or prevent the development of diabetes. Thus, metformin offers beneficial effects to delay the onset and reverse or reduce the progression of many of the metabolic features and cardiovascular risk factors associated with metabolic syndrome.
Resumo:
Adipose tissue of mice bearing a cachexia-inducing murine tumour (MAC16) shows increased expression of zinc-α2-glycoprotein (ZAG), a lipolytic factor thought to be responsible for the increased lipolysis. The anti-cachectic agent eicosapentaenoic acid (EPA) (0.5 g/kg) attenuated the loss of body weight in mice bearing the MAC16 tumour, and this was accompanied by downregulation of ZAG expression in both white and brown adipose tissue, as determined by Western blotting. Glucocorticoids may be responsible for the increased ZAG expression in adipose tissue. Dexamethasone (1.68 μM) stimulated lipolysis in 3T3-L1 adipocytes, and this effect was attenuated by EPA (50 μM). In addition the lipolytic action of dexamethasone was attenuated by anti-ZAG antibody, suggesting that the induction of lipolysis was mediated through an increase in ZAG expression. This was confirmed by Western blotting, which showed that dexamethasone (1.68 μM) induced a two-fold increase in ZAG expression in both cells and media, and that this was attenuated by EPA (50 μM). These results suggest that EPA may preserve adipose tissue in cachectic mice by downregulation of ZAG expression through interference with glucocorticoid signalling. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Carbon monoxide (CO) is a gaseous autacoid known to positively regulate vascular tone; however, its role in angiogenesis is unknown. The aim of this study was to investigate the effect of CO on angiogenesis and vascular endothelial growth factor (VEGF) receptor-2 phosphorylation. Human umbilical vein endothelial cells (HUVECs) were cultured on growth factor- reduced Matrigel and treated with a CO-releasing molecule (CORM-2) or exposed to CO gas (250 ppm). Here, we report the surprising finding that exposure to CO inhibits vascular endothelial growth factor (VEGF)-induced endothelial cell actin reorganisation, cell proliferation, migration and capillary-like tube formation. Similarly, CO suppressed VEGF-mediated phosphorylation of VEGFR-2 at tyrosine residue 1175 and 1214 and basic fibroblast growth factor- (FGF-2) and VEGF-mediated Akt phosphorylation. Consistent with these data, mice exposed to 250 ppm CO (1h/day for 14 days) exhibited a marked decrease in FGF-2-induced Matrigel plug angiogenesis (p<0.05). These data establish a new biological function for CO in angiogenesis and point to a potential therapeutic use for CO as an anti-angiogenic agent in tumour suppression.
Resumo:
Bis-cyclic butenolides, 5-arylated 2(5H)-furanones 6a-c, 7a, b and the 3(2H)-pyridazones 9a-d were prepared by using the aldehyde form of muco halogen acids in electrophilic substitution reactions and in an aldol-like condensation reaction. The cytotoxicity of these simple and bis-cyclic butenolides have been evaluated in tissue culture studies on MAC 13 and MAC 16 murine colon cancer cell lines. The butyl furanone 3 displayed the highest cytotoxicity of 3 μM, as one selected example of a series of dichlorinated pseudoesters. The 5-arylated 2(5H)-furanones 6 and 7 did not show a structure-activity relationship (SAR) depending on the substitution pattern of the aromatic system. An IC50 (concentration inhibiting growth by 50%) was found within a range of 30-50 and 40-50 μM for the MAC 13 and MAC 16 cell lines, respectively. The pyridazine series 9 showed a maximum in-vitro activity for the p-methoxydrivative 9b, having an IC50 of 17 in MAC 13 and 11 μM in MAC 16 cell lines. Selected examples of each series and further novel 2(5H)-furanones such as the hydrazone 5 and the hydantoin 8 have been screened in-vivo in mice and the data are presented. For the pyridazines 9a-d, the in-vitro cytotoxicity correlated with an in-vivo inhibition of tumour growth. The ring expansion of the 5-membered 2(5H)-furanone ring system such as 6a into the 6-membered 3(2H)-pyridazone 9b led to an agent with improved antineoplastic properties. On the resistant MAC 16 cell line the pyridazone 9b displayed 52% tumour inhibition in mice at a dose of 50 mg kg-1 compared with 27% for the 5-FU standard.
Resumo:
We have evaluated the cytotoxicity of a series of novel anti-tubercular 2-pyridyl carboxamidrazones through incubation with human mononuclear leucocytes (MNL), with and without a rat microsomal metabolising system. Isoniazid (INH), the closest structurally related agent, was used as a positive control. Incubation of the 3-benzyloxy-benzylidene, dimethylpropyl-benzylidene and 4-phenyl-benzylidene with MNL showed no significant toxicity in comparison with either INH or DMSO vehicle control. However, the 4-N,N-dimethylamino-1-naphthylidene derivative exerted more than sevenfold greater toxicity compared with INH, while the 4-N,N-dimethylamino-1-naphthylidene, 2-benzyloxy-3-methoxy-benzylidene, 2-t-butylthio-benzylidene and 4-i-propyl-benzylidene derivatives showed toxicity which ranged from five to fourfold that of INH. In the presence of either rat microsomes with or without NADPH, the 3-benzyloxy-benzylidene, dimethylpropyl-benzylidene and 4-phenyl-benzylidene derivatives showed no metabolically-mediated cytotoxicity. The latter two derivatives showed a combination of low toxicity and considerable efficacy against Mycobacteria tuberculosis in vitro and show promise for future development. © 2001 Elsevier Science B.V.
Resumo:
The management of hypertension, dyslipidaemia and hyperglycaemia often requires multiple medications that combine two or more agents with different modes of action to give additive efficacy. In some situations lower doses of two agents with different modes of action can achieve greater efficacy than a high dose of one agent. This is achieved by addressing different pathophysiological features of the disease, whilst at the same time producing fewer side effects than a high dose of one agent. Several examples of this have been described for combinations of blood glucose-lowering therapies in type 2 diabetes. However, the pill burden associated with multiple medications can reduce patient adherence and compromise the potential value of the treatments. To reduce the number of daily doses, single-tablet (‘fixed-dose’) combinations have been introduced to offer greater convenience. There are several ant-diabetic FDCs, mostly combining metformin with another type of glucose-lowering agent. The UK has been less enthusiastic about FDCs than many other parts of the world, and does not have most of these combinations available. One of the concerns expressed about FDCs is a reduced flexibility to select desired doses of the two agents for dose titration. However, in practise the variety of dosage strengths for most FDCs matches the dosages available as separate tablets. Another concern has been the preference to add drugs one at a time to be able to attribute any adverse effects. In most cases the FDC is used when a second drug has been added to a monotherapy that is already a component of the FDC, so it is only the same as adding one agent but without increasing the pill burden.
Resumo:
Substantial evidence indicates that aspirin and related non-steroidal anti-inflammatory drugs (NSAIDs) have potential as chemopreventative/therapeutic agents. However, these agents cannot be universally recommended for prevention purposes due to their potential side-effect profiles. Here, we compared the growth inhibitory and mechanistic activity of aspirin to two novel analogues, diaspirin (DiA) and fumaryl diaspirin (F-DiA). We found that the aspirin analogues inhibited cell proliferation and induced apoptosis of colorectal cancer cells at significantly lower doses than aspirin. Similar to aspirin, we found that an early response to the analogues was a reduction in levels of cyclin D1 and stimulation of the NF-κB pathway. This stimulation was associated with a significant reduction in basal levels of NF-κB transcriptional activity, in keeping with previous data for aspirin. However, in contrast to aspirin, DiA and F-DiA activity was not associated with nucleolar accumulation of RelA. For all assays, F-DiA had a more rapid and significant effect than DiA, identifying this agent as particularly active against colorectal cancer. Using a syngeneic colorectal tumour model in mice, we found that, while both agents significantly inhibited tumour growth in vivo, this effect was particularly pronounced for F-DiA. These data identify two compounds that are active against colorectal cancer in vitro and in vivo. They also identify a potential mechanism of action of these agents and shed light on the chemical structures that may be important for the antitumour effects of aspirin.