11 resultados para Anti- Mycobacterium tuberculosis activity
em Aston University Research Archive
Resumo:
Tuberculosis (TB) is an escalating global health problem and improved vaccines against TB are urgently needed. HLA-E restricted responses may be of interest for vaccine development since HLA-E displays very limited polymorphism (only 2 coding variants exist), and is not down-regulated by HIV-infection. The peptides from Mycobacterium tuberculosis (Mtb) potentially presented by HLA-E molecules, however, are unknown. Here we describe human T-cell responses to Mtb-derived peptides containing predicted HLA-E binding motifs and binding-affinity for HLA-E. We observed CD8(+) T-cell proliferation to the majority of the 69 peptides tested in Mtb responsive adults as well as in BCG-vaccinated infants. CD8(+) T-cells were cytotoxic against target-cells transfected with HLA-E only in the presence of specific peptide. These T cells were also able to lyse M. bovis BCG infected, but not control monocytes, suggesting recognition of antigens during mycobacterial infection. In addition, peptide induced CD8(+) T-cells also displayed regulatory activity, since they inhibited T-cell proliferation. This regulatory activity was cell contact-dependent, and at least partly dependent on membrane-bound TGF-beta. Our results significantly increase our understanding of the human immune response to Mtb by identification of CD8(+) T-cell responses to novel HLA-E binding peptides of Mtb, which have cytotoxic as well as immunoregulatory activity.
Resumo:
Objective In this study, we have used a chemometrics-based method to correlate key liposomal adjuvant attributes with in-vivo immune responses based on multivariate analysis. Methods The liposomal adjuvant composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA) and trehalose 6,6-dibehenate (TDB) was modified with 1,2-distearoyl-sn-glycero-3-phosphocholine at a range of mol% ratios, and the main liposomal characteristics (liposome size and zeta potential) was measured along with their immunological performance as an adjuvant for the novel, postexposure fusion tuberculosis vaccine, Ag85B-ESAT-6-Rv2660c (H56 vaccine). Partial least square regression analysis was applied to correlate and cluster liposomal adjuvants particle characteristics with in-vivo derived immunological performances (IgG, IgG1, IgG2b, spleen proliferation, IL-2, IL-5, IL-6, IL-10, IFN-γ). Key findings While a range of factors varied in the formulations, decreasing the 1,2-distearoyl-sn-glycero-3-phosphocholine content (and subsequent zeta potential) together built the strongest variables in the model. Enhanced DDA and TDB content (and subsequent zeta potential) stimulated a response skewed towards a cell mediated immunity, with the model identifying correlations with IFN-γ, IL-2 and IL-6. Conclusion This study demonstrates the application of chemometrics-based correlations and clustering, which can inform liposomal adjuvant design.
Resumo:
A series of N1-benzylideneheteroarylcarboxamidrazones was prepared in an automated fashion, and tested against Mycobacterium fortuitum in a rapid screen for antimycobacterial activity. Many of the compounds from this series were also tested against Mycobacterium tuberculosis, and the usefulness as M.fortuitum as a rapid, initial screen for anti-tubercular activity evaluated. Various deletions were made to the N1-benzylideneheteroarylcarboxamidrazone structure in order to establish the minimum structural requirements for activity. The N1-benzylideneheteroarylcarbox-amidrazones were then subjected to molecular modelling studies and their activities against M.fortuitum and M.tuberculosis were analysed using quantitative structure-analysis relationship (QSAR) techniques in the computational package TSAR (Oxford Molecular Ltd.). A set of equations predictive of antimycobacterial activity was hereby obtained. The series of N1-benzylidenehetero-arylcarboxamidrazones was also tested against a multidrug-resistant strain of Staphylococcus aureus (MRSA), followed by a panel of Gram-positive and Gram-negative bacteria, if activity was observed for MRSA. A set of antimycobacterial N1-benzylideneheteroarylcarboxamidrazones was hereby discovered, the best of which had MICs against m. fortuitum in the range 4-8μgml-1 and displayed 94% inhibition of M.tuberculosis at a concentration of 6.25μgml-1. The antimycobacterial activity of these compounds appeared to be specific, since the same compounds were shown to be inactive against other classes of organisms. Compounds which were found to be sufficiently active in any screen were also tested for their toxicity against human mononuclear leucocytes. Polyethylene glycol (PEG) was used as a soluble polymeric support for the synthesis of some fatty acid derivatives, containing an isoxazoline group, which may inhibit mycolic acid synthesis in mycobacteria. Both the PEG-bound products and the cleaved, isolated products themselves were tested against M.fortuitum and some low levels of antimycobacterial activity were observed, which may serve as lead compounds for further studies.
Resumo:
Chorismate mutase is one of the essential enzymes in the shikimate pathway and is key to the survival of the organism Mycobacterium tuberculosis. The x-ray crystal structure of this enzyme from Mycobacterium tuberculosis was manipulated to prepare an initial set of in silico protein models of the active site. Known inhibitors of the enzyme were docked into the active site using the flexible ligand / flexible active site side chains approach implemented in CAChe Worksystem (Fujitsu Ltd). The resulting complexes were refined by molecular dynamics studies in explicit water using Amber 9. This yielded a further set of protein models that were used for additional rounds of ligand docking. A binding hypothesis was established for the enzyme and this was used to screen a database of commercially available drug-like compounds. From these results new potential ligands were designed that fitted appropriately into the active site and matched the functional groups and binding motifs founds therein. Some of these compounds and close analogues were then synthesized and submitted for biological evaluation. As a separate part of this thesis, analogues of very active anti-tuberculosis pyridylcarboxamidrazone were also prepared. This was carried out by the addition and the deletion of the substitutions from the lead compound thereby preparing heteroaryl carboxamidrazone derivatives and related compounds. All these compounds were initially evaluated for biological activity against various gram positive organisms and then sent to the TAACF (USA) for screening against Mycobacterium tuberculosis. Some of the new compounds proved to be at least as potent as the original lead compound but less toxic.
Resumo:
The combination of dimethyl dioctadecyl ammonium bromide (DDA) and the synthetic cord factor trehalose dibehenate (TDB) with Ag85B-ESAT-6 (H1 fusion protein) has been found to promote strong protective immune responses against Mycobacterium tuberculosis. The development of a vaccine formulation that is able to facilitate the requirements of sterility, stability and generation of a vaccine product with acceptable composition, shelf-life and safety profile may necessitate selected alterations in vaccine formulation. This study describes the implementation of a sterilisation protocol and the use of selected lyoprotective agents in order to fulfil these requirements. Concomitantly, close analysis of any alteration in physico-chemical characteristics and parameters of immunogenicity have been examined for this promising DDA liposome-based tuberculosis vaccine. The study addresses the extensive guidelines on parameters for non-clinical assessment, suitable for liposomal vaccines and other vaccine delivery systems issued by the World Health Organisation (WHO) and the European Medicines Agency (EMEA). Physical and chemical stability was observed following alteration in formulations to include novel cryoprotectants and radiation sterilisation. Immunogenicity was maintained following these alterations and even improved by modification with lysine as the cryoprotective agent for sterilised formulations. Taken together, these results outline the successful alteration to a liposomal vaccine, representing improved formulations by rational modification, whilst maintaining biological activity.
Resumo:
Adjuvants are substances that enhance immune responses and thus improve the efficacy of vaccination. Few adjuvants are available for use in humans, and the one that is most commonly used (alum) often induces suboptimal immunity for protection against many pathogens. There is thus an obvious need to develop new and improved adjuvants. We have therefore taken an approach to adjuvant discovery that uses in silico modeling and structure-based drug-design. As proof-of-principle we chose to target the interaction of the chemokines CCL22 and CCL17 with their receptor CCR4. CCR4 was posited as an adjuvant target based on its expression on CD4(+)CD25(+) regulatory T cells (Tregs), which negatively regulate immune responses induced by dendritic cells (DC), whereas CCL17 and CCL22 are chemotactic agents produced by DC, which are crucial in promoting contact between DC and CCR4(+) T cells. Molecules identified by virtual screening and molecular docking as CCR4 antagonists were able to block CCL22- and CCL17-mediated recruitment of human Tregs and Th2 cells. Furthermore, CCR4 antagonists enhanced DC-mediated human CD4(+) T cell proliferation in an in vitro immune response model and amplified cellular and humoral immune responses in vivo in experimental models when injected in combination with either Modified Vaccinia Ankara expressing Ag85A from Mycobacterium tuberculosis (MVA85A) or recombinant hepatitis B virus surface antigen (rHBsAg) vaccines. The significant adjuvant activity observed provides good evidence supporting our hypothesis that CCR4 is a viable target for rational adjuvant design.
Resumo:
Tuberculosis (TB), an infection caused by human pathogen Mycobacterium tuberculosis, continues to kill millions each year and is as prevalent as it was in the pre-antimicrobial era. With the emergence of continuously-evolving multi-drug resistant strains (MDR) and the implications of the HIV epidemic, it is crucial that new drugs with better efficacy and affordable cost are developed to treat TB. With this in mind, the first part of this thesis discusses the synthesis of libraries of derivatives of pyridine carboxamidrazones, along with cyclised (1,2,4-triazole and 1,2,4-oxadiazole) and fluorinated analogues. Microbiological screening against M. tuberculosis was carried out at the TAACF, NIAID and IDRI (USA). This confirmed the earlier findings that 2-pyridyl-substituted carboxamidrazones were more active than the 4-pyridyl-substituted carboxamidrazones. Another important observation was that upon cyclisation of these carboxamidrazones, a small number of the triazoles retained their activity while in most of the remaining compounds the activity was diminished. This might be attributed to the significant increase in logP value caused by cyclisation of these linear carboxamidrazones, resulting in high lipophilicity and decreased permeability. Another reason might be that the rigidity conferred upon the compound due to cyclisation, results in failure of the compound to fit into the active site of the putative target enzyme. In order to investigate the potential change to the compounds’ metabolism in the organism and/or host, the most active compounds were selected and a fluorine atom was introduced in the pyridine ring. The microbiological results shows a drastic improvement in the activity of the fluorinated carboxamidrazone amides as compared to their non fluorinated counterpart. This improvement in the activity could possibly be the result of the increased cell permeability caused by the fluorine. In a subsidiary strand, a selection of long-chain , -unsaturated carboxylic esters, -keto, -hydroxy carboxylic esters and -keto, -hydroxy carboxylic esters, structurally similar to mycolic acids, were synthesised. The microbiological data revealed that one of the open chain compound was active against the Mycobacterium tuberculosis H37Rv strain and some resistant isolates. The possible compound activity could be its potential to disrupt mycobacterial cell wall synthesis by interfering with the FAS-II pathway.
Resumo:
Background Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses. Methodology Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cell migration, including that of CCR4+ Tregs. Significance Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.
Resumo:
This review focuses on the use of particulate delivery systems for the purposes of immunization. This includes poly(lactide-co-glycolide) (PLGA), ISCOMs, liposomes, niosomes, virosomes, chitosan, and other biodegradable polymers. These systems are evaluated in terms of their use as carriers for protein subunit and DNA vaccines. There is an extensive focus on recent literature, the understanding of biological interactions, and relation of this to our present understanding of immunological mechanisms of action. In addition, there is consideration of formulation techniques including emulsification, solvent diffusion, DNA complexation, and entrapment. The diversity of formulation strategies presented is a testament to the exponential growth and interest in the area of vaccine delivery systems. A case study for the application of particulate vaccine carriers is assessed in terms of vaccine development and recent insights into the possible design and application of vaccines against two of the most important pathogens that threaten mankind and for which there is a significant need: Mycobacterium tuberculosis and human immunodeficiency virus. This review addresses the rationale for the use of particulate delivery systems in vaccine design in the context of the diversity of carriers for DNA- and protein-based vaccines and their potential for application in terms of the critical need for effective vaccines. © 2005 by Begell House, Inc.
Resumo:
The complex and essential cell wall of Mycobacterium tuberculosis represents a plethora of new and old drug targets that collectively form an apparent mycobacterial “Achilles’ heel”. The mycolic acids are long-chain α-alkyl-β-hydroxy fatty acids (C70–90), which are unique to mycobacterial species, forming an integral component of the mycolyl–arabinogalactan–peptidoglycan complex. Their apparent uniqueness to the M. tuberculosis complex has rendered components of mycolic acid biosynthesis as powerful drug targets for specific tuberculosis (TB) chemotherapy. Here, I will discuss a contribution to TB drug discovery by deconvolution of the inhibitory mechanisms of a number of antitubercular compounds targeting mycolic acid biosynthesis. I will begin with the early days, elucidating the mode of action of ethionamide [1] and thiolactomycin [2], each targeting two separate components of the fatty acid synthase II (FAS-II) pathway. I will further discuss the recently discovered tetrahydropyrazo[1,5-a]pyrimidine-3-carboxamide compounds [3] which selectively target the essential, catalytically silent M. tuberculosis EchA6, providing a crucial lipid shunt between β-oxidation and FAS-II and supplying lipid precursors for essential mycolate biosynthesis. Finally, I will discuss the recent discovery of the mode of action of the indazole sulfonamides [4], inhibiting M. tuberculosis KasA by, a completely novel inhibitory mechanism.
Resumo:
A series of N1-benzylidene pyridine-2-carboxamidrazone anti-tuberculosis compounds has been evaluated for their cytotoxicity using human mononuclear leucocytes (MNL) as target cells. All eight compounds were significantly more toxic than dimethyl sulphoxide control and isoniazid (INH) with the exception of a 4-methoxy-3-(2-phenylethyloxy) derivative, which was not significantly different in toxicity compared with INH. The most toxic agent was an ethoxy derivative, followed by 3-nitro, 4-methoxy, dimethylpropyl, 4-methylbenzyloxy, 3-methoxy-4-(-2-phenylethyloxy) and 4-benzyloxy in rank order. In comparison with the effect of selected carboxamidrazone agents on cells alone, the presence of either N-acetyl cysteine (NAC) or glutathione caused a significant reduction in the toxicity of INH, as well as on the 4-benzyloxy derivative, although both increased the toxicity of a 4-N,N-dimethylamino-1-naphthylidene and a 2-t-butylthio derivative. The derivatives from this and three previous studies were subjected to computational analysis in order to derive equations designed to establish quantitative structure activity relationships for these agents. Twenty-five compounds were thus resolved into two groups (1 and 2), which on analysis yielded equations with r2 values in the range 0.65-0.92. Group 1 shares a common mode of toxicity related to hydrophobicity, where cytotoxicity peaked at logP of 3.2, while Group 2 toxicity was strongly related to ionisation potential. The presence of thiols such as NAC and GSH both promoted and attenuated toxicity in selected compounds from Group 1, suggesting that secondary mechanisms of toxicity were operating. These studies will facilitate the design of future low toxicity high activity anti-tubercular carboxamidrazone agents. © 2003 Elsevier Science B.V. All rights reserved.