5 resultados para Anion transport

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transport of a group of quinolone antibiotics across the human intestinal model, Caco-2 cells, was investigated. It was found that the transport of the quinolones generally correlated with the lipophilicity of the compounds, indicating the passive diffusional transcellular processes were involved. However, it was observed that the transport in both directions apical-to-basolateral and basolateral-to-apical was not equivalent, and polarised transport occurred. For all the quinolones studied except, BMS-284756-01, it was found that the basolateral-to-apical transport was significantly greater than the apical-to-basolateral transport. This finding suggested that the quinolones underwent a process of active secretion. The pKas and logPs for the quinolones were determined using potentiometric titrations. The measured logP values were compared with those determined using theoretical methods. The theoretical methods for calculating logP including the Moriguchi method correlated poorly with the measured logP values. Further investigations revealed that there may be an active transporter involved in the apical-to-basolateral transport of quinolones as well. This mechanism was sensitive to competing quinolones, but, it was unaffected by the metabolic inhibitor combination of sodium azide (15mM) with 2-deoxy-D-glucose (50mM). The basolateral-to-apical transport of quinolones was found to be sensitive to inhibition by a number of different inhibitors. The metabolic inhibitors, sodium azide (15mM) with 2-deoxy-D-glucose (50mM) and 2,4-dinitrophenol (1mM), were able to reduce the basolateral-to-apical transport of quinolones. A reduction in temperature from 37°C to 2°C caused an 80-fold decrease in the transport of gatifloxacin in both directions, however, this effect was not sufficient to abolish the greater basolateral-to-apical secretion. As with apical-to-basolateral transport, it was found that quinolones competed with gatifloxacin for basolateral-to-apical transport, both ofloxacin (100μM) and norfloxacin (100μM) significantly (P<0.003) decreased the basolateral-to-apical transport of gatifloxacin; however, ciprofloxacin (100μM and 300μM) had no effect. A number of inhibitors of various transport systems were also investigated. It was found that the anion transport inhibitor, probenecid (100 μM) had a significant inhibitory effect on the basolateral-to-apical transport of ciprofloxacin (P=0.039), while the cation transport inhibitor cimetidine (100μM and 500μM) had no effect. The organic anion exchange inhibitor 4,4'diisothiocyanostilbene-2-2' -disulphonic acid DIDS (400μM) also had a significant inhibitory effect (P=O.O 13). The PgP inhibitor and anion exchange inhibitor verapamil (400Mμ) was able to completely abolish the basolateral-to-apical secretion of gatifloxacin and bring it into line with the apical-to-basolateral flux. In conclusion, the apical-to-basolateral and basolateral-toapical transport of quinolones involved an active component. The basolateral-to-apical secretion was abolished by a verapamil (400μM), a bisubstrate for PgP and the anion transporter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis the factors surrounding the permeation of alkali and alkaline earth metal salts through hydrogel membranes are investigated. Although of relevance to aqueous separations in general, it was with their potential application in sensors that this work was particularly concerned. In order to study the effect that the nature of the solute has on the transport process, a single polymer matrix, poly (2-hydroxyethyl methacrylate), was initially studied. The influence of cation variation in the presence of a fixed anion was looked at, followed by the effect of the anion in the presence of a fixed cation. The anion was found to possess the dominant influence and tended to subsume any influence by the cation. This is explained in terms of the structure-making and structure-breaking characteristics of the ions in their solute-water interactions. Analogies in the transport behaviour of the salts are made with the Hofmeister series. The effect of the chemical composition of the polymer backbone on the water structuring in the hydrogel and, consequently, transport through the membrane, was investigated by preparing a series of poly (2-hydroxyethyl methacrylate) copolymer membranes and determining the permeability coefficient of salts with a fixed anion. The results were discussed in terms of the `free-volume' model of permeation and the water structuring of the polymer backbone. The ability of ionophores to selectively modulate the permeation of salts through hydrogel membranes was also examined. The results indicated that a dualsorption model was in operation. Finally, hydrogels were used as membrane overlays on coated wire ion-selective electrodes that employed conventional plasticised-PVC-valinomycin based sensing membranes. The hydrogel overlays were found to affect the access of the analyte but not the underlying electrochemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noradrenaline was found to significantly stimulate fluid and Na absorption across everted sacs of rat jejunum. Of a number of a1, and 2-adrenoceptor antagonists tested only prazosin significantly inhibited the stimulant effect of noradrenaline and further experiments revealed an antiabsorptive effect of prazosin alone. Theophylline reduced jejunal fluid and Na absorption and this effect was not reversed by 2-adrenoceptor stimulation in contrast to previous findings in vivo. Evidence suggests the everted sac preparation is not appropriate to the study of intestinal fluid and electrolyte transport. The investigation of Jejunal ion transport in vitro was continued using an Ussing chamber preparation. Selective 2-adrenoceptor stimulation was found to depress electrogenic anion secretion, as neurotoxin tetrodotoxin indicated that this was a direct epithelial effect. 2-adrenoceptor agonists have considerable therapeutic value as antisecretory agents and the model of rat jejunum in vitro represents a convenient experimental model for research in this area. The selective 2-adrenoceptor antagonist ICI 118551 decreased basal SCC and inhibited increases in SCC in response to isoprenaline or salbutamol indicating the presence of a 2-adrenoceptor mechanism mediating both secretory tone and increases in secretory processes. Many intestinal secretagogues elicit electrolyte secretion via the stimulation of intramural secretory nervous pathways. If these pathways involve the activation of 2-adrenoceptorsthe 2-adrenoceptor antagonists may be useful in the treatment of diarrhoeal diseases. A single pass lumen perfusion technique was used to investigate possible sympathetic tone over colonic fluid and electrolyte absorption in the rat colon in vivo. The technique employed appeared to lack the necessary resolution for this study and alternative approaches are discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation of rat jejunal and distal colonic electrolyte transport in-vitro was undertaken using an Ussing chamber prepartion. Selective α2-adrenoceptor stimualtion in the jejunum was found to depress theo-phylline elevated anion secretion, as evidenced by decreases in short- circuit current (SCC). or α1 -Adrenoceptor stimulation, after α2 -adrenoceptor antagonism in the jejunum, evoked transient increases in basal anion secretion, as reflected by transient increases in basal SCC. The use of the neurotoxin tetrodotoxin indicated that this was a direct epithelial secretory effect. 5-hydroxytryptamine (5-HT) on the jejunum elicited transient increases in basal anion secretion, as demonstrated by transient increases in basal SCC. The use of tetrodotoxin, reserpine and α1 -adrenoceptor antagonists, indicated that a major component of this epithelial secretory effect by 5-HT, was associated with activation of intramural nervous pathways of the sympathetic nervous system, ultimately stimulating α1-adrenoceptors. This might represent an important secretory mechanism by 5-HT in the jejunum. β2-Adrenoceptor stimulation in the distal colon was found to decrease basal SCC, as evidenced by the metoprolol resistant effect of the selective β2- adrenoceptor agonist salbutamol, and lack of effect of the selective β1-adrenoceptor agonist prenalterol. An investigation of rat distal colonic fluid and electrolyte transport in-vivo was undertaken using an colonic loop technique. Although a basal colonic absorption of Na+ and Cl-, and a secretion of K+ were observed, these processes were not under tonic α-adrenergic regulation, as evidenced by the lack of effect of selective α-adrenoceptor antagonism. The secretory effects of prostaglandin-E2 were inhibited by α-adrenoceptor activation, whereas such stimulation did not evoke pro-absorptive responses upon basal transport, unlike noradrenaline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multidrug resistance protein MRP1 mediates the ATP-dependent efflux of many chemotherapeutic agents and organic anions. MRP1 has two nucleotide binding sites (NBSs) and three membrane spanning domains (MSDs) containing 17 transmembrane helices linked by extracellular and cytoplasmic loops (CL). Homology models suggest that CL7 (amino acids 1141-1195) is in a position where it could participate in signaling between the MSDs and NBSs during the transport process. We have individually replaced eight charged residues in CL7 with Ala, and in some cases, an amino acid with the same charge, and then investigated the effects on MRP1 expression, transport activity, and nucleotide and substrate interactions. A triple mutant in which Glu(1169), Glu(1170), and Glu(1172) were all replaced with Ala was also examined. The properties of R1173A and E1184A were comparable with those of wild-type MRP1, whereas the remaining mutants were either poorly expressed (R1166A, D1183A) or exhibited reduced transport of one or more organic anions (E1144A, D1179A, K1181A, (1169)AAQA). Same charge mutant D1183E was also not expressed, whereas expression and activity of R1166K were similar to wild-type MRP1. The moderate substrate-selective changes in transport activity displayed by mutants E1144A, D1179A, K1181A, and (1169)AAQA were accompanied by changes in orthovanadate-induced trapping of [alpha-(32)P]azidoADP by NBS2 indicating changes in ATP hydrolysis or release of ADP. In the case of E1144A, estradiol glucuronide no longer inhibited trapping of azidoADP. Together, our results demonstrate the extreme sensitivity of CL7 to mutation, consistent with its critical and complex dual role in both the proper folding and transport activity of MRP1.