8 resultados para Ancillary ligand

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In April 2007, the Biochemical Society held a meeting to compare and contrast ligand binding and activation of Family A and B GPCRs (G-protein-coupled receptors). Being the largest class, Family A GPCRs usually receive the most attention, although a previous Biochemical Society meeting has focused on Family B GPCRs. The aim of the present meeting was to bring researchers of both families together in order to identify commonalities between the two. The present article introduces the proceedings of the meeting, briefly commenting on the focus of each of the following articles. ©The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural networks are usually curved statistical models. They do not have finite dimensional sufficient statistics, so on-line learning on the model itself inevitably loses information. In this paper we propose a new scheme for training curved models, inspired by the ideas of ancillary statistics and adaptive critics. At each point estimate an auxiliary flat model (exponential family) is built to locally accommodate both the usual statistic (tangent to the model) and an ancillary statistic (normal to the model). The auxiliary model plays a role in determining credit assignment analogous to that played by an adaptive critic in solving temporal problems. The method is illustrated with the Cauchy model and the algorithm is proved to be asymptotically efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The receptor for CGRP (calcitonin gene-related peptide) is a heterodimer between a GPCR (G-protein-coupled receptor), CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity-modifying protein 1). Models have been produced of RAMP1 and CLR. It is likely that the C-terminus of CGRP interacts with the extracellular N-termini of CLR and RAMP1; the extreme N-terminus of CLR is particularly important and may interact directly with CGRP and also with RAMP1. The N-terminus of CGRP interacts with the TM (transmembrane) portion of the receptor; the second ECL (extracellular loop) is especially important. Receptor activation is likely to involve the relative movements of TMs 3 and 6 to create a G-protein-binding pocket, as in Family A GPCRs. Pro321 in TM6 appears to act as a pivot. At the base of TMs 2 and 3, Arg151, His155 and Glu211 may form a loose equivalent of the Family A DRY (Asp-Arg-Tyr) motif. Although the details of this proposed activation mechanism clearly do not apply to all Family B GPCRs, the broad outlines may be conserved. ©The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic survey of the possible methods of chemical extraction of iron by chloride formation has been presented and supported by a comparable study of :feedstocks, products and markets. The generation and evaluation of alternative processes was carried out by the technique of morphological analysis vihich was exploited by way of a computer program. The final choice was related to technical feasibility and economic viability, particularly capital cost requirements and developments were made in an estimating procedure for hydrometallurgjcal processes which have general applications. The systematic exploration included the compilation of relevant data, and this indicated a need.to investigate precipitative hydrolysis or aqueous ferric chloride. Arising from this study, two novel hydrometallurgical processes for manufacturing iron powder are proposed and experimental work was undertaken in the following .areas to demonstrate feasibility and obtain basic data for design purposes: (1) Precipitative hydrolysis of aqueous ferric chloride. (2) Gaseous chloridation of metallic iron, and oxidation of resultant ferrous chloride. (3) Reduction of gaseous ferric chloride with hydrogen. (4) Aqueous acid leaching of low grade iron ore. (5) Aqueous acid leaching of metallic iron. The experimentation was supported by theoretical analyses dealing with: (1) Thermodynamics of hydrolysis. (2) Kinetics of ore leaching. (3) Kinetics of metallic iron leaching. (4) Crystallisation of ferrous chloride. (5) Oxidation of anhydrous ferrous chloride. (6) Reduction of ferric chloride. Conceptual designs are suggested fbr both the processes mentioned. These draw attention to areas where further work is necessary, which are listed. Economic analyses have been performed which isolate significant cost areas, und indicate total production costs. Comparisons are mode with previous and analogous proposals for the production of iron powder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 5-HT3 receptors are members of the cys-loop family of ligand-gated ion channels. Two functional subtypes are known, the homomeric 5HT3A and the heteromeric 5HT3A/B receptors, which exhibit distinct biophysical characteristics but are difficult to differentiate pharmacologically. Atomic force microscopy has been used to determine the stoichiometry and architecture of the heteromeric 5HT3A/B receptor. Each subunit was engineered to express a unique C-terminal epitope tag, together with six sequential histidine residues to facilitate nickel affinity purification. The 5-HT3 receptors, ectopically expressed in HEK293 cells, were solubilised, purified and decorated with antibodies to the subunit specific epitope tags. Imaging of individual receptors by atomic force microscopy revealed a pentameric arrangement of subunits in the order BBABA, reading anti-clockwise when viewed from the extracellular face. Homology models for the heteromeric receptor were then constructed using both the electron microscopic structure of the nicotinic acetylcholine receptor, from Torpedo marmorata, and the X-ray crystallographic structure of the soluble acetylcholine binding protein, from Lymnaea stagnalis, as templates. These homology models were used, together with equivalent models constructed for the homomeric receptor, to interpret mutagenesis experiments designed to explore the minimal recognition differences of both the natural agonist, 5-HT, and the competitive antagonist, granisetron, for the two human receptor subtypes. The results of this work revealed that the 5-HT3B subunit residues within the ligand binding site, for both the agonist and antagonist, are accommodating to conservative mutations. They are consistent with the view that the 5-HT3A subunit provides the principal and the 5-HT38 subunit the complementary recognition interactions at the binding interface.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of binding of small ligands to dihydrofolate reductase protein has been investigated using all-atom molecular dynamics simulations. The existence of a mechanism that facilitates the search of the binding site by the ligand is demonstrated. The mechanism consists of ligand diffusing on the protein’s surface. It has been discussed in the literature before, but has not been explicitly confirmed for realistic molecular systems. The strength of this nonspecific binding is roughly estimated and found to be essential for the binding kinetics.