3 resultados para Analytical mechanics
em Aston University Research Archive
Resumo:
A variation of low-density parity check (LDPC) error-correcting codes defined over Galois fields (GF(q)) is investigated using statistical physics. A code of this type is characterised by a sparse random parity check matrix composed of C non-zero elements per column. We examine the dependence of the code performance on the value of q, for finite and infinite C values, both in terms of the thermodynamical transition point and the practical decoding phase characterised by the existence of a unique (ferromagnetic) solution. We find different q-dependence in the cases of C = 2 and C ≥ 3; the analytical solutions are in agreement with simulation results, providing a quantitative measure to the improvement in performance obtained using non-binary alphabets.
Resumo:
Using analytical methods of statistical mechanics, we analyse the typical behaviour of a multiple-input multiple-output (MIMO) Gaussian channel with binary inputs under low-density parity-check (LDPC) network coding and joint decoding. The saddle point equations for the replica symmetric solution are found in particular realizations of this channel, including a small and large number of transmitters and receivers. In particular, we examine the cases of a single transmitter, a single receiver and symmetric and asymmetric interference. Both dynamical and thermodynamical transitions from the ferromagnetic solution of perfect decoding to a non-ferromagnetic solution are identified for the cases considered, marking the practical and theoretical limits of the system under the current coding scheme. Numerical results are provided, showing the typical level of improvement/deterioration achieved with respect to the single transmitter/receiver result, for the various cases. © 2007 IOP Publishing Ltd.
Resumo:
Many practical routing algorithms are heuristic, adhoc and centralized, rendering generic and optimal path configurations difficult to obtain. Here we study a scenario whereby selected nodes in a given network communicate with fixed routers and employ statistical physics methods to obtain optimal routing solutions subject to a generic cost. A distributive message-passing algorithm capable of optimizing the path configuration in real instances is devised, based on the analytical derivation, and is greatly simplified by expanding the cost function around the optimized flow. Good algorithmic convergence is observed in most of the parameter regimes. By applying the algorithm, we study and compare the pros and cons of balanced traffic configurations to that of consolidated traffic, which provides important implications to practical communication and transportation networks. Interesting macroscopic phenomena are observed from the optimized states as an interplay between the communication density and the cost functions used. © 2013 IEEE.