15 resultados para Analytical evaluation
em Aston University Research Archive
Resumo:
This thesis describes research that has developed the principles of a modelling tool for the analytical evaluation of a manufacturing strategy. The appropriate process of manufacturing strategy formulation is based on mental synthesis with formal planning processes supporting this role. Inherent to such processes is a stage where the effects of alternative strategies on the performance of a manufacturing system must be evaluated so that a choice of preferred strategy can be made. Invariably this evaluation is carried out by practitioners applying mechanisms of judgement, bargaining and analysis. Ibis thesis makes a significant and original contribution to the provision of analytical support for practitioners in this role. The research programme commences by defining the requirements of analytical strategy evaluation from the perspective of practitioners. A broad taxonomy of models has been used to identify a set of potentially suitable techniques for the strategy evaluation task. Then, where possible, unsuitable modelling techniques have been identified on the basis of evidence in the literature and discarded from this set. The remaining modelling techniques have been critically appraised by testing representative contemporary modelling tools in an industrially based experimentation programme. The results show that individual modelling techniques exhibit various limitations in the strategy evaluation role, though some combinations do appear to provide the necessary functionality. On the basis of this comprehensive and in-depth knowledge a modelling tool ' has been specifically designed for this task. Further experimental testing has then been conducted to verify the principles of this modelling tool. Ibis research has bridged the fields of manufacturing strategy formulation and manufacturing systems modelling and makes two contributions to knowledge. Firstly, a comprehensive and in-depth platform of knowledge has been established about modelling techniques in manufacturing strategy evaluation. Secondly, the principles of a tool that supports this role have been formed and verified.
Resumo:
This thesis describes research that has developed the principles of a modelling tool for the analytical evaluation of a manufacturing strategy. The appropriate process of manufacturing strategy formulation is based on mental synthesis with formal planning processes supporting this role. Inherent to such processes is a stage where the effects of alternative strategies on the performance of a manufacturing system must be evaluated so that a choice of preferred strategy can be made. Invariably this evaluation is carried out by practitioners applying mechanisms of judgement, bargaining and analysis. Ibis thesis makes a significant and original contribution to the provision of analytical support for practitioners in this role. The research programme commences by defining the requirements of analytical strategy evaluation from the perspective of practitioners. A broad taxonomy of models has been used to identify a set of potentially suitable techniques for the strategy evaluation task. Then, where possible, unsuitable modelling techniques have been identified on the basis of evidence in the literature and discarded from this set. The remaining modelling techniques have been critically appraised by testing representative contemporary modelling tools in an industrially based experimentation programme. The results show that individual modelling techniques exhibit various limitations in the strategy evaluation role, though some combinations do appear to provide the necessary functionality. On the basis of this comprehensive and in-depth knowledge a modelling tool ' has been specifically designed for this task. Further experimental testing has then been conducted to verify the principles of this modelling tool. Ibis research has bridged the fields of manufacturing strategy formulation and manufacturing systems modelling and makes two contributions to knowledge. Firstly, a comprehensive and in-depth platform of knowledge has been established about modelling techniques in manufacturing strategy evaluation. Secondly, the principles of a tool that supports this role have been formed and verified.
Resumo:
This thesis describes research that has developed the principles of a modelling tool for the analytical evaluation of a manufacturing strategy. The appropriate process of manufacturing strategy formulation is based on mental synthesis with formal planning processes supporting this role. Inherent to such processes is a stage where the effects of alternative strategies on the performance of a manufacturing system must be evaluated so that a choice of preferred strategy can be made. Invariably this evaluation is carried out by practitioners applying mechanisms of judgement, bargaining and analysis. Ibis thesis makes a significant and original contribution to the provision of analytical support for practitioners in this role. The research programme commences by defining the requirements of analytical strategy evaluation from the perspective of practitioners. A broad taxonomy of models has been used to identify a set of potentially suitable techniques for the strategy evaluation task. Then, where possible, unsuitable modelling techniques have been identified on the basis of evidence in the literature and discarded from this set. The remaining modelling techniques have been critically appraised by testing representative contemporary modelling tools in an industrially based experimentation programme. The results show that individual modelling techniques exhibit various limitations in the strategy evaluation role, though some combinations do appear to provide the necessary functionality. On the basis of this comprehensive and in-depth knowledge a modelling tool ' has been specifically designed for this task. Further experimental testing has then been conducted to verify the principles of this modelling tool. Ibis research has bridged the fields of manufacturing strategy formulation and manufacturing systems modelling and makes two contributions to knowledge. Firstly, a comprehensive and in-depth platform of knowledge has been established about modelling techniques in manufacturing strategy evaluation. Secondly, the principles of a tool that supports this role have been formed and verified.
Resumo:
This study of concentrating solar thermal power generation sets out to evaluate the main existing collection technologies using the framework of the Analytical Hierarchy Process (AHP). It encompasses parabolic troughs, heliostat fields, linear Fresnel reflectors, parabolic dishes, compound parabolic concentrators and linear Fresnel lenses. These technologies are compared based on technical, economic and environmental criteria. Within these three categories, numerous sub-criteria are identified; similarly sub-alternatives are considered for each technology. A literature review, thermodynamic calculations and an expert workshop have been used to arrive at quantitative and qualitative assessments. The methodology is applied principally to a case study in Gujarat in north-west India, though case studies based on the Sahara Desert, Southern Spain and California are included for comparison. A sensitivity analysis is carried out for Gujarat. The study concludes that the linear Fresnel lens with a secondary compound parabolic collector, or the parabolic dish reflector, is the preferred technology for north-west India.
Resumo:
In this paper a Hierarchical Analytical Network Process (HANP) model is demonstrated for evaluating alternative technologies for generating electricity from MSW in India. The technological alternatives and evaluation criteria for the HANP study are characterised by reviewing the literature and consulting experts in the field of waste management. Technologies reviewed in the context of India include landfill, anaerobic digestion, incineration, pelletisation and gasification. To investigate the sensitivity of the result, we examine variations in expert opinions and carry out an Analytical Hierarchy Process (AHP) analysis for comparison. We find that anaerobic digestion is the preferred technology for generating electricity from MSW in India. Gasification is indicated as the preferred technology in an AHP model due to the exclusion of criteria dependencies and in an HANP analysis when placing a high priority on net output and retention time. We conclude that HANP successfully provides a structured framework for recommending which technologies to pursue in India, and the adoption of such tools is critical at a time when key investments in infrastructure are being made. Therefore the presented methodology is thought to have a wider potential for investors, policy makers, researchers and plant developers in India and elsewhere. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Data Envelopment Analysis (DEA) is a powerful analytical technique for measuring the relative efficiency of alternatives based on their inputs and outputs. The alternatives can be in the form of countries who attempt to enhance their productivity and environmental efficiencies concurrently. However, when desirable outputs such as productivity increases, undesirable outputs increase as well (e.g. carbon emissions), thus making the performance evaluation questionable. In addition, traditional environmental efficiency has been typically measured by crisp input and output (desirable and undesirable). However, the input and output data, such as CO2 emissions, in real-world evaluation problems are often imprecise or ambiguous. This paper proposes a DEA-based framework where the input and output data are characterized by symmetrical and asymmetrical fuzzy numbers. The proposed method allows the environmental evaluation to be assessed at different levels of certainty. The validity of the proposed model has been tested and its usefulness is illustrated using two numerical examples. An application of energy efficiency among 23 European Union (EU) member countries is further presented to show the applicability and efficacy of the proposed approach under asymmetric fuzzy numbers.
Resumo:
Microbiological diagnosis of catheter-related bloodstream infection (CR-BSI) is often based on isolation of indistinguishable micro-organisms from an explanted catheter tip and blood culture, confirmed by antibiograms. Whether phenotypic identification of coagulase-negative staphylococci (CoNS) allows an accurate diagnosis of CR-BSI to be established was evaluated. Eight patients with a diagnosis of CR-BSI had CoNS isolated from pure blood cultures and explanted catheter tips which were considered as indistinguishable strains by routine microbiological methods. For each patient, an additional three colonies of CoNS isolated from the blood and five from the catheter tip were subcultured and further characterized by antibiogram profiles, analytical profile index (API) biotyping and PFGE. PFGE distinguished more strains of CoNS compared to API biotyping or antibiograms (17, 10 and 11, respectively). By PFGE, indistinguishable micro-organisms were only isolated from pure blood and catheter tip cultures in four out of eight (50%) patients thus supporting the diagnosis of CR-BSI. In another patient, indistinguishable micro-organisms were identified in both cultures; however, other strains of CoNS were also present. The remaining three patients had multiple strains of CoNS, none of which were indistinguishable in the tip and blood cultures, thus questioning the diagnosis of CR-BSI. Phenotypic characterization of CoNS lacked discriminatory power. Current routine methods of characterizing a limited number of pooled colonies may generate misleading results as multiple strains may be present in the cultures. Multiple colonies should be studied using a rapid genotypic characterization method to confirm or refute the diagnosis of CR-BSI. © 2007 SGM.
Resumo:
The present work describes the development of a proton induced X-ray emission (PIXE) analysis system, especially designed and builtfor routine quantitative multi-elemental analysis of a large number of samples. The historical and general developments of the analytical technique and the physical processes involved are discussed. The philosophy, design, constructional details and evaluation of a versatile vacuum chamber, an automatic multi-sample changer, an on-demand beam pulsing system and ion beam current monitoring facility are described.The system calibration using thin standard foils of Si, P, S,Cl, K, Ca, Ti, V, Fe, Cu, Ga, Ge, Rb, Y and Mo was undertaken at proton beam energies of 1 to 3 MeV in steps of 0.5 MeV energy and compared with theoretical calculations. An independent calibration check using bovine liver Standard Reference Material was performed. The minimum detectable limits have been experimentally determined at detector positions of 90° and 135° with respect to the incident beam for the above range of proton energies as a function of atomic number Z. The system has detection limits of typically 10- 7 to 10- 9 g for elements 14
Resumo:
Rhizome of cassava plants (Manihot esculenta Crantz) was catalytically pyrolysed at 500 °C using analytical pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) method in order to investigate the relative effect of various catalysts on pyrolysis products. Selected catalysts expected to affect bio-oil properties were used in this study. These include zeolites and related materials (ZSM-5, Al-MCM-41 and Al-MSU-F type), metal oxides (zinc oxide, zirconium (IV) oxide, cerium (IV) oxide and copper chromite) catalysts, proprietary commercial catalysts (Criterion-534 and alumina-stabilised ceria-MI-575) and natural catalysts (slate, char and ashes derived from char and biomass). The pyrolysis product distributions were monitored using models in principal components analysis (PCA) technique. The results showed that the zeolites, proprietary commercial catalysts, copper chromite and biomass-derived ash were selective to the reduction of most oxygenated lignin derivatives. The use of ZSM-5, Criterion-534 and Al-MSU-F catalysts enhanced the formation of aromatic hydrocarbons and phenols. No single catalyst was found to selectively reduce all carbonyl products. Instead, most of the carbonyl compounds containing hydroxyl group were reduced by zeolite and related materials, proprietary catalysts and copper chromite. The PCA model for carboxylic acids showed that zeolite ZSM-5 and Al-MSU-F tend to produce significant amounts of acetic and formic acids.
Resumo:
This thesis reports on the results of the analyses of certain aspects of sampling inspection plans. The investigation has been confined to attributes (as distinct from variables) plans and in this respect.the analyses have been concerned with two main aspects of single and double plans. These are:- (i) the Average Outgoing Quality Limit (AOQL) of the plan. (ii) the Average Sample Number (ASN) of the plan. In the former connection the investigation has been concerned with the evaluation of the AOQL analytically and the determination of the fraction defective of the incoming material to give the AOQL. The analyses have been applied to both single and double sampling plans, In the latter connection the investigation has been concerned with the evaluation of the maximum ASN analytically and the determination of the fraction defective of the incoming material to give the maximum value of ASN. The analyses have been confined only to double sampling plans because in the case of single sampling the ASN is constant and is equal to n, the sample size.
Resumo:
Current practice in National Health Service (NHS) hospitals employs 70% Industrial Methylated Spirit spray for surface disinfection of components required in Grade A pharmaceutical environments. This study seeks to investigate other agents and procedures that may provide more effective sanitisation. Several methods are available to test the efficacy of disinfectants against vegetative organisms. However, no methods currently available test the efficacy of disinfectants against spores on the hard surfaces encountered in the pharmacy aseptic processing environment. Therefore, a method has been developed to test the efficacy of disinfectants against spores, modified from British Standard 13697 and Association of Analytical Chemists standards. The testing procedure was used to evaluate alternative biocides and disinfection methods for transferring components into hospital pharmacy cleanrooms, and to determine which combinations of biocide and application method have the greatest efficacy against spores of Bacillus subtilis subspecies subtilis 168, Bacillus subtilis American Type Culture Collection (ATCC) 6633, and Bacillus pumilis ATCC 27142. Stainless steel carrier test plates were used to represent the hard surfaces in hospital pharmacy cleanrooms. Plates were inoculated with 10(7)-10(8) colony-forming units per milliliter (CFU/mL) and treated with the various biocide formulations, using different disinfection methods. Sporicidal activity was calculated as log reduction in CFU. Of the biocides tested, 6% hydrogen peroxide and a quaternary ammonium compound/chlorine dioxide combination were most effective compared to a Quat/biguanide, amphoteric surfactant, 70% v/v ethanol in deionised water and isopropyl alcohol in water for injection. Of the different application methods tested, spraying followed by wiping was the most effective, followed closely by wiping alone. Spraying alone was least effective.
Resumo:
This thesis describes the synthesis of functionalised polymeric material by variety of free-radical mediated polymerisation techniques including dispersion emulsion, seeded emulsion, suspension and bulk polymerisation reactions. Organic fluorophores and nanoparticles such as quantum dots were incorporated within polymeric materials, in particular, thiol-functionalised polymer microspheres, which were fluorescently labelled either during synthesis or by covalent attachment post synthesis. The resultant fluorescent polymeric conjugates were then assessed for their utility in biological systems as an analytical tool for cells or biological structures. Quantum dot labelled, thiol-functionalised microspheres were assessed for their utility in the visualisation and tracking of red blood cells. Determination of the possible internalisation of fluorescent microspheres into red blood cells was required before successful tracking of red blood cells could take place. Initial work appeared to indicate the presence of fluorescent microspheres inside red blood cells by the process of beadfection. A range of parameters were also investigated in order to optimise beadfection. Thiol-functionalised microspheres labelled successfully with organic fluorophores were used to image the tear film of the eye. A description of problems encountered with the covalent attachment of hydrophilic, thiol-reactive fluorescent dyes to a variety of modified polymer microspheres is also included in this section. Results indicated large microspheres were particularly useful when tracking the movement of fluid along the tear meniscus. Functional bulk polymers were synthesised for assessment of their interaction with titanium dioxide nanoparticles. Thiol-functionalised polymethyl methacrylate and spincoated thiouronium-functionalised polystyrene appeared to facilitate the attachment of titanium dioxide nanoparticles. Interaction assays included the use of XPS analysis and processes such as centrifugation. Attempts to synthesise 4-vinyl catechol, a compound containing hydroxyl moieties with potential for coordination with titanium dioxide nanoparticles, were also carried out using 3,4-dihydroxybenzaldehyde as the starting material.
Resumo:
The main aim of this research is to demonstrate strategic supplier performance evaluation of a UK-based manufacturing organisation using an integrated analytical framework. Developing long term relationship with strategic suppliers is common in today's industry. However, monitoring suppliers' performance all through the contractual period is important in order to ensure overall supply chain performance. Therefore, client organisations need to measure suppliers' performance dynamically and inform them on improvement measures. Although there are many studies introducing innovative supplier performance evaluation frameworks and empirical researches on identifying criteria for supplier evaluation, little has been reported on detailed application of strategic supplier performance evaluation and its implication on overall performance of organisation. Additionally, majority of the prior studies emphasise on lagging factors (quality, delivery schedule and value/cost) for supplier selection and evaluation. This research proposes both leading (organisational practices, risk management, environmental and social practices) and lagging factors for supplier evaluation and demonstrates a systematic method for identifying those factors with the involvement of relevant stakeholders and process mapping. The contribution of this article is a real-life case-based action research utilising an integrated analytical model that combines quality function deployment and the analytic hierarchy process method for suppliers' performance evaluation. The effectiveness of the method has been demonstrated through number of validations (e.g. focus group, business results, and statistical analysis). Additionally, the study reveals that enhanced supplier performance results positive impact on operational and business performance of client organisation.
Resumo:
Internal quantum efficiency (IQE) of a high-brightness blue LED has been evaluated from the external quantum efficiency measured as a function of current at room temperature. Processing the data with a novel evaluation procedure based on the ABC-model, we have determined separately IQE of the LED structure and light extraction efficiency (LEE) of UX:3 chip. Full text Nowadays, understanding of LED efficiency behavior at high currents is quite critical to find ways for further improvement of III-nitride LED performance [1]. External quantum efficiency ηe (EQE) provides integral information on the recombination and photon emission processes in LEDs. Meanwhile EQE is the product of IQE ηi and LEE ηext at negligible carrier leakage from the active region. Separate determination of IQE and LEE would be much more helpful, providing correlation between these parameters and specific epi-structure and chip design. In this paper, we extend the approach of [2,3] to the whole range of the current/optical power variation, providing an express tool for separate evaluation of IQE and LEE. We studied an InGaN-based LED fabricated by Osram OS. LED structure grown by MOCVD on sapphire substrate was processed as UX:3 chip and mounted into the Golden Dragon package without molding. EQE was measured with Labsphere CDS-600 spectrometer. Plotting EQE versus output power P and finding the power Pm corresponding to EQE maximum ηm enables comparing the measurements with the analytical relationships ηi = Q/(Q+p1/2+p-1/2) ,p = P/Pm , and Q = B/(AC) 1/2 where A, Band C are recombination constants [4]. As a result, maximum IQE value equal to QI(Q+2) can be found from the ratio ηm/ηe plotted as a function of p1/2 +p1-1/2 (see Fig.la) and then LEE calculated as ηext = ηm (Q+2)/Q . Experimental EQE as a function of normalized optical power p is shown in Fig. 1 b along with the analytical approximation based on the ABCmodel. The approximation fits perfectly the measurements in the range of the optical power (or operating current) variation by eight orders of magnitude. In conclusion, new express method for separate evaluation of IQE and LEE of III-nitride LEDs is suggested and applied to characterization of a high-brightness blue LED. With this method, we obtained LEE from the free chip surface to the air as 69.8% and IQE as 85.7% at the maximum and 65.2% at the operation current 350 rnA. [I] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, "Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies," 1. AppL Phys., vol. 114, no. 7, pp. 071101, Aug., 2013. [2] C. van Opdorp and G. W. 't Hooft, "Method for determining effective non radiative lifetime and leakage losses in double-heterostructure lasers," 1. AppL Phys., vol. 52, no. 6, pp. 3827-3839, Feb., 1981. [3] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, "A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes," 1. AppL Phys., vol. 106, no. II, pp. 114508, Dec., 2009. [4] Qi Dai, Qifeng Shan, ling Wang, S. Chhajed, laehee Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, Min-Ho Kim, and Yongjo Park, "Carrier recombination mechanisms and efficiency droop in GalnN/GaN light-emitting diodes," App/. Phys. Leu., vol. 97, no. 13, pp. 133507, Sept., 2010. © 2014 IEEE.
Resumo:
A thermogravimetric methodology was developed to investigate and semi-quantify the extent of synergistic effects during pyrolysis and combustion of municipal solid waste (MSW). Results from TGA-MS were used to compare the pyrolysis and combustion characteristics of single municipal solid waste components (polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS), branches (BR), leaves (LV), grass (GR), packaging paper (PK), hygienic paper (HP) and cardboard (CB)) and a mixture (MX) of PP, BR and CB. Samples were heated under dynamic conditions at 20°C/min from 25°C to 1000°C with the continuous record of their main evolved fragments. Synergistic effects were evaluated by comparing experimental and calculated weight losses and relative areas of MS peaks. Pyrolysis of the mixture happened in two stages, with the release of H2, CH4, H2O, CO and CO2 between 200 and 415°C and the release of CH4, CxHy, CO and CO2 between 415 and 525°C. Negative synergistic effect in the 1st stage was attributed to the presence of PP where the release of hydrocarbons and CO2 from BR and CB was inhibited, whereas positive synergistic effects were observed during the 2nd degradation stage. In a second part of the study, synergistic effects were related to the dependency of the effective activation energy (Eα) versus the conversion (α). Higher Eαs were obtained for MX during its 1st stage of pyrolysis and lower Eαs for the 2nd stage when compared to the individual components. On the other hand, mostly positive synergistic effects were observed during the combustion of the same mixture, for which lower Eαs were recorded.