15 resultados para Amylin

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calcitonin family of peptides comprises calcitonin, amylin two calcitonin gene-related peptides (CGRPs), and adrenomedullin. The first calcitonin receptor was cloned in 1991. Its pharmacology is complicated by the existence of several splice variants. The receptors for the other members the family are made up of subunits. The calcitonin-like receptor (CL receptor) requires a single transmembrane domain protein, termed receptor activity modifying protein, RAMP1, to function as a CGRP receptor. RAMP2 and -3 enable the same CL receptor to behave as an adrenomedullin receptor. Although the calcitonin receptor does not require RAMP to bind and respond to calcitonin, it can associate with the RAMPs, resulting in a series of receptors that typically have high affinity for amylin and varied affinity for CGRP. This review aims to reconcile what is observed when the receptors are reconstituted in vitro with the properties they show in native cells and tissues. Experimental conditions must be rigorously controlled because different degrees of protein expression may markedly modify pharmacology in such a complex situation. Recommendations, which follow International Union of Pharmacology guidelines, are made for the nomenclature of these multimeric receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The responses of the electrically stimulated guinea-pig ileum and vas deferens to human and rat calcitonin gene-related peptide (CGRP) and amylin were investigated. 2. The inhibition of contraction of the ileum produced by human alpha CGRP was antagonized by human alpha CGRP8-37 (apparent pA2 estimated at 7.15 +/- 0.23) > human alpha CGRP19-37 (apparent pA2 estimated as 6.67 +/- 0.33) > [Tyr0]-human alpha CGRP28-37. The amylin antagonist, AC187, was three fold less potent than CGRP8-37 in antagonizing human alpha CGRP. 3. Both human beta- and rat alpha CGRP inhibited contractions of the ileum, but this was less sensitive to inhibition by CGRP8-37 than the effect of human alpha CGRP. However, CGRP19-37 was twenty times more effective in inhibiting the response to rat alpha CGRP (apparent pA2 estimated as 8.0 +/- 0.1) compared to human alpha CGRP. 4. Rat amylin inhibited contractions in about 10% of ileal preparations; this effect was not antagonized by any CGRP fragment. Human amylin had no action on this preparation. 5. Both human and rat alpha CGRP inhibited electrically stimulated contractions of the vas deferens, which were not antagonized by 3 microM CGRP8-37 or 10 microM AC187. 6. Rat amylin inhibited the stimulated contractions of the vas deferens (EC50 = 77 +/- 9 nM); human amylin was less potent (EC50 = 213 +/- 22 nM). The response to rat amylin was antagonized by 10 microM CGRP8-37 (EC50 = 242 +/- 25 nM) and 10 microM AC187 (EC50 = 610 +/- 22 nM). 7. It is concluded that human alpha CGRP relaxes the guinea-pig ileum via CGRP1-like receptors, but that human beta CGRP and rat alpha CGRP may use additional receptors. These are distinct CGRP2-like and amylin receptors on guinea-pig vas deferens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CHO-K1 cell line responds to the peptide amylin by a rapid elevation of cAMP. The related peptide calcitonin gene-related peptide (CGRP) is 100 times less potent at stimulating adenylate cyclase than is amylin. The actions of amylin at this receptor are concentration dependent and not antagonized by the CGRP antagonist CGRP-(8-37). Although these cells have receptors for calcitonin, amylin is unable to take part in any high affinity interaction with these receptors, as assessed by radioligand binding. The CHO-K1 cell line has receptors for amylin that are distinct from those for calcitonin and CGRP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were to examine the binding characteristics of the rat CGRP receptor and to further the classification of CGRP and amylin receptors in guinea-pig tissue preparations. Binding characteristics of CGRP were investigated on rat splenic, cerebellar and liver membrane preparations. Human-α-CGRP, rat-α-CGRP and the CGRP receptor analogues Tyrº -CGRPC28-37) and [Cys (ACM)2,7 ]-human CGRP and the CGRP receptor antagonist CGRPC8-37) were utilised in competitive radioligand binding experiments to identify possible CGRP receptor subtypes in these tissues. There appeared to be no significant differences between the rat CGRP receptors examined. A panel of monoclonal antibodies (Mabs) raised against CGRP were employed to investigate the structure-activity relationships of CGRP and its receptor. No differences between the tissue receptors were observed using this panel of Mabs. The effects of human-α, human-β, rat-α-CGRP, human and rat amylin and adrenomedullin(13-52) were examined on the spontaneously beating right atria and on electrically evoked twitch contractions of isolated guinea-pig ileum, vas deferens and left atria. All of the peptides caused concentration-dependent inhibition of twitch amplitude in the ileum and vas deferens. CGRP produced positive inotropic effects in the right and left atria and positive chronotropic effects in the right atria. A variety of CGRP receptor antagonists and putative amylin receptor antagonists were used to antagonise these effects. CGRP(8-37) is currently used as a basis for CGRP receptor classification (Dennis, et al., 1989). Based upon results obtained using CGRP(8-37) it has been shown that the guinea-pig ileum contains mainly CGRP 1 receptors and the vas deferens contain CGRP2 receptors. Amylin was shown to act at receptors distinct from those for CGRP and it is postulated that amylin has its own receptors in these preparations. Experiments using CGRP (19-37) and Tyrº -CGRP(28-37) indicate that human and rat CGRP act at distinct receptors in guinea-pig ileum and vas deferens. The amylin receptor antagonist amylin(8-37) and the putative antagonist AC187 provide evidence to suggest human and rat amylin also act at receptors able to distinguish between the two types of amylin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Historically, calcitonin gene-related peptide (CGRP) receptors have been divided into two classes, CGRP(1) and CGRP(2).After the cloning of calcitonin receptor-like receptor (CLR) and receptor activity-modifying proteins (RAMPs), it became clear that the CGRP(1) receptor was a complex between CLR and RAMP1. It is now apparent that the CGRP(2) receptor phenotype is the result of CGRP acting at receptors for amylin and adrenomedullin. Accordingly, the term "CGRP(2)" receptor should no longer be used, and the "CGRP(1)" receptor should be known as the "CGRP" receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcitonin (CT) receptors dimerize with receptor activity-modifying proteins (RAMPs) to create high-affinity amylin (AMY) receptors, but there is no reliable means of pharmacologically distinguishing these receptors. We used agonists and antagonists to define their pharmacology, expressing the CT (a) receptor alone or with RAMPs in COS-7 cells and measuring cAMP accumulation. Intermedin short, otherwise known as adrenomedullin 2, mirrored the action of αCGRP, being a weak agonist at CT(a), AMY 2(a), and AMY3(a) receptors but considerably more potent at AMY1(a) receptors. Likewise, the linear calcitonin gene-related peptide (CGRP) analogs (Cys(ACM)2,7)hαCGRP and (Cys(Et) 2,7)haCGRP were only effective at AMY1(a) receptors, but they were partial agonists. As previously observed in COS-7 cells, there was little induction of the AMY2(a) receptor phenotype; thus, AMY 2(a) was not examined further in this study. The antagonist peptide salmon calcitonin8-32 (sCT8-32) did not discriminate strongly between CT and AMY receptors; however, AC187 was a more effective antagonist of AMY responses at AMY receptors, and AC413 additionally showed modest selectivity for AMY1(a) over AMY3(a) receptors. CGRP8-37 also demonstrated receptor-dependent effects. CGRP 8-37 more effectively antagonized AMY at AMY1(a) than AMY3(a) receptors, although it was only a weak antagonist of both, but it did not inhibit responses at the CT(a) receptor. Low CGRP 8-37 affinity and agonism by linear CGRP analogs at AMY 1(a) are the classic signature of a CGRP2 receptor. Our data indicate that careful use of combinations of agonists and antagonists may allow pharmacological discrimination of CT(a), AMY1(a), and AMY3(a) receptors, providing a means to delineate the physiological significance of these receptors. Copyright © 2005 The American Society for Pharmacology and Experimental Therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RAMPs (receptor activity-modifying proteins) are single-pass transmembrane proteins that associate with certain family-B GPCRs (G-protein-coupled receptors). Specifically for the CT (calcitonin) receptor-like receptor and the CT receptor, this results in profound changes in ligand binding and receptor pharmacology, allowing the generation of six distinct receptors with preferences for CGRP (CT gene-related peptide) adrenomedullin, amylin and CT. There are three RAMPs: RAMP1-RAMP3. The N-terminus appears to be the main determinant of receptor pharmacology whereas the transmembrane domain contributes to association of the RAMP with the GPCR. The N-terminus of all members of the RAMP family probably contains two disulphide bonds; a potential third disulphide is found in RAMP1 and RAMP3. The N-terminus appears to be in close proximity to the ligand and plays a key role in its binding, either directly or indirectly. BIBN4096BS, a CGRP antagonist, targets RAMP1 and this gives the compound very high selectivity for the human CGRP(1) receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adrenomedullin is a vascular tissue peptide and a member of the calcitonin family of peptides, which includes calcitonin calcitonin-gene-related peptide (CGRP) and amylin. Its many biological actions are mediated via CGRP type 1 (CGRP(1)) receptors and by specific adrenomedullin receptors. Although the pharmacology of these receptors is distinct, they are both represented in molecular terms by the type II family G-protein-coupled receptor, calcitonin-receptor-like receptor (CRLR). The specificity here is defined by co-expression of receptor-activity-modifying proteins (RAMPs). CGRP(1) receptors are represented by CRLR and RAMP1, and specific adrenomedullin receptors by CRLR and RAMP2 or 3. Here we discuss how CRLR/RAMP2 relates to adrenomedullin binding, pharmacology and pathophysiology, and how chemical cross-linking of receptor-ligand complexes in tissue relates to that in CRLR/RAMP2-expressing cells. CRLR, like other type II family G-protein-coupled receptors, signals via G(s) and adenylate cyclase activation. We demonstrated that adrenomedullin signalling in cell lines expressing specific adrenomedullin receptors followed this expected pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The receptors which mediate the effects of calcitonin gene-related peptide (CGRP), amylin and adrenomedullin on the guinea-pig vas deferens have been investigated. 2. All three peptides cause concentration dependant inhibitions of the electrically stimulated twitch response (pD 2s for CGRP, amylin and adrenomedullin of 7.90 ± 0.11, 7.70 ± 0.19 and 7.25 ± 0.10 respectively). 3. CGRP 8-37 (1 μM) and AC187 (10 μM) showed little antagonist activity against adrenomedullin. 4. Adrenomedullin 22-52 by itself inhibited the electrically stimulated contractions of the vas deferens and also antagonized the responses to CGRP, amylin and adrenomedullin. 5. [ 125I]-adrenomedullin labelled a single population of binding sites in vas deferens membranes with a pIC 50 of 8.91 and a capacity of 643 fmol mg -1. Its selectivity profile was adrenomedullin > AC187 > CGRP = amylin. It was clearly distinct from a site labelled by [ 125I]-CGRP (pIC 50 = 8.73, capacity = 114 fmol mg -1, selectivity CGRP > amylin = AC187 > adrenomedullin). [ 125I]-amylin bound to two sites with a total capacity of 882 fmol mg -1. 6. Although CGRP has been shown to act at a CGRP 2 receptor on the vas deferens with low sensitivity to CGRP 8-37, this antagonist displaced [ 125I]-CGRP with high affinity from vas deferens membranes. This affinity was unaltered by increasing the temperature from 4°C to 25°C, suggesting the anomalous behaviour of CGRP 8-37 is not due to temperature differences between binding and functional assays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Potency orders were determined for a series of agonists and antagonists on the calcitonin gene-related peptide (CGRP) receptor of rat L6 myocytes. The agents tested were all shown to have been active against CGRP, amylin or adrenomedullin receptors. 2. AC187 had a PIC50 Of 6.8 ± 0.10, making it 14 fold less potent as an antagonist than CGRP8-37 (PIC50, 7.95 ± 0.14). Amyline8-37 was equipotent to AC187 (PIC50, 6.6 ± 0.16) and CGRP19-37 was a fold less potent than either (pIC50 6.1 ± 0.24). 3. [Ala11]-CGRP8-37 was 6 fold less potent than CGRP8-37, (pIC50 7.13 ± 0.14), whereas [Ala18] CGRP8-37 was approximately equipotent to CGRP8-37 (pIC50, 7.52 ± 0.15). However, [Ala11,Ala18]- CGRP8-37 was over 300 fold less potent than CGRP8-37 (pIC50, 5.30 ± 0.04). 4. [Tyr0]-CGRP28-37, amylin19-37 and adrenomedullin22-52 were inactive as antagonists at concentrations of up to 1 μM. 5. Biotinyl-human α-CGRP was 150 fold less potent than human α-CGRP itself (EC50 values of 48 ± 17 nM and 0.31 ± 0.13 nM, respectively). At 1 μM, [Cys(acetomethoxy)(2'7)]-CGRP was inactive as an agonist. 6. These results confirm a role for Arg11 in maintaining the high affinity binding of CGRP8-37. Arg18 is of less direct significance for high affinity binding, but it may be important in maintaining the amphipathic nature of CGRP and its analogues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adrenomedullin (AM) and amylin are involved in angiogenesis/lymphangiogenesis and glucose homeostasis/food intake, respectively. They activate receptor activity-modifying protein (RAMP)/G protein-coupled receptor (GPCR) complexes. RAMP3 with the calcitonin receptor-like receptor (CLR) forms the AM(2) receptor, whereas when paired with the calcitonin receptor AMY(3) receptors are formed. RAMP3 interacts with other GPCRs although the consequences of these interactions are poorly understood. Therefore, variations in the RAMP3 sequence, such as single nucleotide polymorphisms or mutations could be relevant to human health. Variants of RAMP3 have been identified. In particular, analysis of AK222469 (Homo sapiens mRNA for receptor (calcitonin) activity-modifying protein 3 precursor variant) revealed several nucleotide differences, three of which encoded amino acid changes (Cys40Trp, Phe100Ser, Leu147Pro). Trp56Arg RAMP3 is a polymorphic variant of human RAMP3 at a conserved amino acid position. To determine their function we used wild-type (WT) human RAMP3 as a template for introducing amino acid mutations. Mutant or WT RAMP3 function was determined in Cos-7 cells with CLR or the calcitonin receptor (CT((a))). Cys40Trp/Phe100Ser/Leu147Pro RAMP3 was functionally compromised, with reduced AM and amylin potency at the respective AM(2) and AMY(3(a)) receptor complexes. Cys40Trp and Phe100Ser mutations contributed to this phenotype, unlike Leu147Pro. Reduced cell-surface expression of mutant receptor complexes probably explains the functional data. In contrast, Trp56Arg RAMP3 was WT in phenotype. This study provides insight into the role of these residues in RAMP3. The existence of AK222469 in the human population has implications for the function of RAMP3/GPCR complexes, particularly AM and amylin receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CGRP receptor binding may be measured using homogenates of cell membranes or intact cells. Here a microcentrifugation-based assay is described that utilizes radioiodinated CGRP in displacement studies to determine the binding parameters for any ligand that interacts with CGRP receptors. A similar assay is described for binding to cultured cells. The protocols may be adapted for other radioligands or for filtration-based assays. The main problems with CGRP binding assays can usually be traced to degradation of the radioligand or displacing ligands. Also, some cell lines fail to express CGRP receptors after extensive passage. CGRP binding assays provide a rapid and easy approach for distinguishing between receptors for CGRP and related peptides such as adrenomedullin and amylin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral therapy for type 2 diabetes mellitus, when used appropriately, can safely assist patients to achieve glycaemic targets in the short to medium term. However, the progressive nature of type 2 diabetes usually requires a combination of two or more oral agents in the longer term, often as a prelude to insulin therapy. Issues of safety and tolerability, notably weight gain, often limit the optimal application of anti-diabetic drugs such as sulforylureas and thiazolidinediones. Moreover, the impact of different drugs, even within a single class, on the risk of long-term vascular complications has come under scrutiny. For example, recent publication of evidence suggesting potential detrimental effects of rosiglitazone on myocardial events generated a heated debate and led to a reduction in use of this drug. In contrast, current evidence supports the view that pioglitazone has vasculoprotective properties. Both drugs are contraindicated in patients who are at risk of heart failure. An additional recently identified safety concern is an increased risk of fractures, especially in postmenopausal women. Several new drugs with glucose-lowering efficacy that may offer certain advantages have recently become available. These include (i) injectable glucagonlike peptide-1 (GLP-1) receptor agonists and oral dipeptidyl peptidase-4 (DPP-4) inhibitors; (ii) the amylin analogue pramlintide; and (iii) selective cannabinoid receptor-1 (CB1) antagonists. GLP-1 receptor agonists, such as exenatide, stimulate nutrient-induced insulin secretion and reduce inappropriate glucagon secretion while delaying gastric emptying and reducing appetite. These agents offer a low risk of hypoglycaemia combined with sustained weight loss. The DPP-4 inhibitors sitagliptin and vildagliptin are generally weight neutral, with less marked gastrointestinal adverse effects than the GLP-1 receptor agonists. Potential benefits of GLP-1 receptor stimulation on P cell neogenesis are under investigation. Pancreatitis has been reported in exenatide-treated patients. Pramlintide, an injected peptide used in combination with insulin, can reduce insulin dose and bodyweight. The CB1 receptor antagonist rimonabant promotes weight loss and has favourable effects on aspects of the metabolic syndrome, including the hyperglycaemia of type 2 diabetes. However, in 2007 the US FDA declined approval of rimonabant, requiring more data on adverse effects, notably depression. The future of dual peroxisome proliferator-activated receptor-alpha/gamma agonists, or glitazars, is presently uncertain following concerns about their safety. In conclusion, several new classes of drugs have recently become available in some countries that offer new options for treating type 2 diabetes. Beneficial or neutral effects on bodyweight are an attractive feature of the new drugs. However, the higher cost of these agents, coupled with an absence of long-term safety and clinical outcome data, need to be taken into consideration by clinicians and healthcare organizations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor conformational states, explaining the pharmacological preferences of calcitonin receptor-RAMP complexes. This provides novel insight into our understanding of G protein-coupled receptor-protein interaction that is likely broadly applicable for this receptor class.