40 resultados para Amplified WDM systems
em Aston University Research Archive
Resumo:
We propose a novel recursive-algorithm based maximum a posteriori probability (MAP) detector in spectrally-efficient coherent wavelength division multiplexing (CoWDM) systems, and investigate its performance in a 1-bit/s/Hz on-off keyed (OOK) system limited by optical-signal-to-noise ratio. The proposed method decodes each sub-channel using the signal levels not only of the particular sub-channel but also of its adjacent sub-channels, and therefore can effectively compensate deterministic inter-sub-channel crosstalk as well as inter-symbol interference arising from narrow-band filtering and chromatic dispersion (CD). Numerical simulation of a five-channel OOK-based CoWDM system with 10Gbit/s per channel using either direct or coherent detection shows that the MAP decoder can eliminate the need for phase control of each optical carrier (which is necessarily required in a conventional CoWDM system), and greatly relaxes the spectral design of the demultiplexing filter at the receiver. It also significantly improves back-to-back sensitivity and CD tolerance of the system.
Resumo:
Digital back-propagation (DBP) has recently been proposed for the comprehensive compensation of channel nonlinearities in optical communication systems. While DBP is attractive for its flexibility and performance, it poses significant challenges in terms of computational complexity. Alternatively, phase conjugation or spectral inversion has previously been employed to mitigate nonlinear fibre impairments. Though spectral inversion is relatively straightforward to implement in optical or electrical domain, it requires precise positioning and symmetrised link power profile in order to avail the full benefit. In this paper, we directly compare ideal and low-precision single-channel DBP with single-channel spectral-inversion both with and without symmetry correction via dispersive chirping. We demonstrate that for all the dispersion maps studied, spectral inversion approaches the performance of ideal DBP with 40 steps per span and exceeds the performance of electronic dispersion compensation by ~3.5 dB in Q-factor, enabling up to 96% reduction in complexity in terms of required DBP stages, relative to low precision one step per span based DBP. For maps where quasi-phase matching is a significant issue, spectral inversion significantly outperforms ideal DBP by ~3 dB.
Resumo:
An improved digital backward propagation (DBP) is proposed to compensate inter-nonlinear effects and dispersion jointly in WDM systems based on an advanced perturbation technique (APT). A non-iterative weighted concept is presented to replace the iterative in analytical recursion expression, which can dramatically simplify the complexity and improve accuracy compared to the traditional perturbation technique (TPT). Furthermore, an analytical recursion expression of the output after backward propagation is obtained initially. Numerical simulations are executed for various parameters of the transmission system. The results indicate that the advanced perturbation technique will relax the step size requirements and reduce the oversampling factor when launch power is higher than -2 dBm. We estimate this technique will reduce computational complexity by a factor of around seven with respect to the conventional DBP. © 2013 Optical Society of America.
Resumo:
We present experimental results for wavelength-division multiplexed (WDM) transmission performance using unbalanced proportions of 1s and 0s in pseudo-random bit sequence (PRBS) data. This investigation simulates the effect of local, in time, data unbalancing which occurs in some coding systems such as forward error correction when extra bits are added to the WDM data stream. We show that such local unbalancing, which would practically give a time-dependent error-rate, can be employed to improve the legacy long-haul WDM system performance if the system is allowed to operate in the nonlinear power region. We use a recirculating loop to simulate a long-haul fibre system.
Resumo:
This thesis investigates the physical behaviour of solitons in wavelength division multiplexed (WDM) systems with dispersion management in a wide range of dispersion regimes. Background material is presented to show how solitons propagate in optical fibres, and key problems associated with real systems are outlined. Problems due to collision induced frequency shifts are calculated using numerical simulation, and these results compared with analytical techniques where possible. Different two-step dispersion regimes, as well as the special cases of uniform and exponentially profiled systems, are identified and investigated. In shallow profile, the constituent second-order dispersions in the system are always close to the average soliton value. It is shown that collision-induced frequency shifts in WDM soliton transmission systems are reduced with increasing dispersion management. New resonances in the collision dynamics are illustrated, due to the relative motion induced by the dispersion map. Consideration of third-order dispersion is shown to modify the effects of collision-induced timing jitter and third-order compensation investigated. In all cases pseudo-phase-matched four-wave mixing was found to be insignificant compared to collision induced frequency shift in causing deterioration of data. It is also demonstrated that all these effects are additive with that of Gordon-Haus jitter.
Resumo:
This thesis examines experimentally options for optical fibre transmission over oceanic distances. Its format follows the chronological evolution of ultra-long haul optical systems, commencing with opto-electronic regenerators as repeaters, progressing to optically amplified NRZ systems and finally solitonic propagation. In each case recirculating loop techniques are deployed to simplify the transmission experiments. Advances in high speed electronics have allowed regenerators operating at 10 Gbit/s to become a practical reality. By augmenting such devices with optical amplifiers it is possible to greatly enhance the repeater spacing. Work detailed in this thesis has culminated in the propagation of 10 Gbit/s data over 400,000 km with a repeater spacing of 160 km. System reliability and robustness are enhanced by the use of a directly modulated DFB laser transmitter and total insensitivity of the system to the signal state of polarisation. Optically amplified ultra-long haul NRZ systems have taken on particular importance with the impending deployment of TAT 12/13 and TPC 5. The performance of these systems is demonstrated to be primarily limited by analogue impairments such as the accumulation of amplifier noise, polarisation effects and optical non-linearities. These degradations may be reduced by the use of appropriate dispersion maps and by scrambling the transmitted state of signal polarisation. A novel high speed optically passive polarisation scrambler is detailed for the first time. At bit rates in excess of 10 Gbit/s it is shown that these systems are severely limited and do not offer the advantages that might be expected over regenerated links. Propagation using solitons as the data bits appears particularly attractive since the dispersive and non-linear effects of the fibre allow distortion free transmission. However, the generation of pure solitons is difficult but must be achieved if the uncontrolled transmission distance is to be maximised. This thesis presents a new technique for the stabilisation of an erbium fibre ring laser that has aUowed propagation of 2.5 Gbit/s solitons to the theoretical limit of ~ 18,000 km. At higher bit rates temporal jitter becomes a significant impairment and to aUow an increase in the aggregate line rate multiplexing in both time and polarisation domains has been proposed. These techniques are shown to be of only limited benefit in practical systems and ultimately some form of soliton transmission control is required. The thesis demonstrates synchronous retiming by amplitude modulation that has allowed 20 Gbit/s data to propagate 125,000 km error free with an amplifier spacing approaching the soliton period. Ultimately the speed of operation of such systems is limited by the electronics used and, thus, a new form of soliton control is demonstrated using all optical techniques to achieve synchronous phase modulation.
Resumo:
This paper identifies the important limiting processes in transmission capacity for amplified soliton systems. Some novel control techniques are described for optimizing this capacity. In particular, dispersion compensation and phase conjugation are identified as offering good control of jitter without the need for many new components in the system. An advanced average soliton model is described and demonstrated to permit large amplifier spacing. The potential for solitons in high-dispersion land-based systems is discussed and results are presented showing 10 Gbit s$^{-1}$ transmission over 1000 km with significant amplifier spacing.
Resumo:
This thesis presents results of transmission experiments using optical solitons in a dispersion managed optical fibre recirculating loop. The basic concepts of pulse propagation in optical fibre are introduced before optical solitons and their use in optically amplified fibre systems are discussed. The role of dispersion management in such systems is then considered. The design, operation and limitations of the recirculating loop and soliton sources which were used and the experimental techniques are described before the experimental work is presented. The experimental work covers a number of areas all of which used dispersion management of the transmission line. A novel ultra-long distance propagation scheme which achieved low timing jitter by suppression of the amplifier noise and by working close to the zero dispersion wavelength has been discovered. The use of fibre Bragg gratings as wavelength filters to suppress noise and reduce timing jitter has been investigated. The performance of the fibre grating cornpared favourably with that of a bulk device and was in good agreement with theoretical predictions. The upgrade of existing standard fibre systems to higher bit rates is currently an important issue. The possibility of using solitons with dispersion compensation to allow an increase in data rate of existing standard fibre systems to 10Gbit/s over 5000km has been demonstrated. The applicability of this technique to longer distances, higher bit rates or longer amplifier spans is also investigated by optimisation of the dispersion management scheme. The use of fibre Bragg gratings as the dispersion compensating elements in such standard fibre transmission experiments has been examined and the main problem that these devices currently have, high polarisation mode dispersion, is discussed. The likely future direction of optical communications and what part solitons and dispersion management will play in this development is discussed in the thesis conclusions
Resumo:
This thesis presents details on progress made in the fabrication and application of short and novel structure fibre Bragg gratings. The basic theoretical concepts of in-fibre Bragg gratings and photosensitive mechanisms are introduced together with an overview of fabrication methods and applications presented to date. The fabrication of fibre Bragg gratings using a quadrupled Nd:YAG laser is presented and some of the issues of grating fabrication using a fabrication using a phasemask are investigated, including the variation of the separation of the fibre and phasemask, and other alignment issues. A new apodisation technique is presented, enabling the production of gratings with a wide range of spectral profiles. The technique is used to investigate the design and fabrication of length limited fibre Bragg gratings for use in telecommunication systems as filters. Application to devices designed for use in WDM systems is presented. The use of fibre Bragg gratings as high spatial resolution distributed sensors is investigated. Grating sensing arrays comprising very short apodised gratings are demonstrated and Chirped Moiré gratings are implemented as distributed sensors achieving high spatial resolution with miniature point sensing sub-elements. A novel grating sensing element designed to imitate an interferometer is also presented. Finally, the behaviour of gratings fabricated in Boron-Germania-co-doped fibre is investigated, revealing atypical behaviour of the Bragg wavelength during ageing.
Resumo:
This thesis presents several advanced optical techniques that are crucial for improving high capacity transmission systems. The basic theory of optical fibre communications are introduced before optical solitons and their usage in optically amplified fibre systems are discussed. The design, operation, limitations and importance of the recirculating loop are illustrated. The crucial role of dispersion management in the transmission systems is then considered. Two of the most popular dispersion compensation methods - dispersion compensating fibres and fibre Bragg gratings - are emphasised. A tunable dispersion compensator is fabricated using the linear chirped fibre Bragg gratings and a bending rig. Results show that it is capable of compensating not only the second order dispersion, but also higher order dispersion. Stimulated Raman Scattering (SRS) are studied and discussed. Different dispersion maps are performed for all Raman amplified standard fibre link to obtain maximum transmission distances. Raman amplification is used in most of our loop experiments since it improves the optical signal-to-noise ratio (OSNR) and significantly reduces the nonlinear intrachannel effects of the transmission systems. The main body of the experimental work is concerned with nonlinear optical switching using the nonlinear optical loop mirrors (NOLMs). A number of different types of optical loop mirrors are built, tested and implemented in the transmission systems for noise suppression and 2R regeneration. Their results show that for 2R regeneration, NOLM does improve system performance, while NILM degrades system performance due to its sensitivity to the input pulse width, and the NALM built is unstable and therefore affects system performance.
Resumo:
This paper identifies the important limiting processes in transmission capacity for amplified soliton systems. Some novel control techniques are described for optimizing this capacity. In particular, dispersion compensation and phase conjugation are identified as offering good control of jitter without the need for many new components in the system. An advanced average soliton model is described and demonstrated to permit large amplifier spacing. The potential for solitons in high-dispersion land-based systems is discussed and results are presented showing 10 Gbit s$^{-1}$ transmission over 1000 km with significant amplifier spacing.
Resumo:
A new generation of high-capacity WDM systems with extremely robust performance has been enabled by coherent transmission and digital signal processing. To facilitate widespread deployment of this technology, particularly in the metro space, new photonic components and subsystems are being developed to support cost-effective, compact, and scalable transceivers. We briefly review the recent progress in InP-based photonic components, and report numerical simulation results of an InP-based transceiver comprising a dual-polarization I/Q modulator and a commercial DSP ASIC. Predicted performance penalties due to the nonlinear response, lower bandwidth, and finite extinction ratio of these transceivers are less than 1 and 2 dB for 100-G PM-QPSK and 200-G PM-16QAM, respectively. Using the well-established Gaussian-Noise model, estimated system reach of 100-G PM-QPSK is greater than 600 km for typical ROADM-based metro-regional systems with internode losses up to 20 dB. © 1983-2012 IEEE.
Resumo:
This thesis presents experimental investigation of different effects/techniques that can be used to upgrade legacy WDM communication systems. The main issue in upgrading legacy systems is that the fundamental setup, including components settings such as EDFA gains, does not need to be altered thus the improvement must be carried out at the network terminal. A general introduction to optical fibre communications is given at the beginning, including optical communication components and system impairments. Experimental techniques for performing laboratory optical transmission experiments are presented before the experimental work of this thesis. These techniques include optical transmitter and receiver designs as well as the design and operation of the recirculating loop. The main experimental work includes three different studies. The first study involves a development of line monitoring equipment that can be reliably used to monitor the performance of optically amplified long-haul undersea systems. This equipment can provide instant finding of the fault locations along the legacy communication link which in tum enables rapid repair execution to be performed hence upgrading the legacy system. The second study investigates the effect of changing the number of transmitted 1s and Os on the performance of WDM system. This effect can, in reality, be seen in some coding systems, e.g. forward-error correction (FEC) technique, where the proportion of the 1s and Os are changed at the transmitter by adding extra bits to the original bit sequence. The final study presents transmission results after all-optical format conversion from NRZ to CSRZ and from RZ to CSRZ using semiconductor optical amplifier in nonlinear optical loop mirror (SOA-NOLM). This study is mainly based on the fact that the use of all-optical processing, including format conversion, has become attractive for the future data networks that are proposed to be all-optical. The feasibility of the SOA-NOLM device for converting single and WDM signals is described. The optical conversion bandwidth and its limitations for WDM conversion are also investigated. All studies of this thesis employ 10Gbit/s single or WDM signals being transmitted over dispersion managed fibre span in the recirculating loop. The fibre span is composed of single-mode fibres (SMF) whose losses and dispersion are compensated using erbium-doped fibre amplifiers (EDFAs) and dispersion compensating fibres (DCFs), respectively. Different configurations of the fibre span are presented in different parts.
Resumo:
In this paper, we present experimental results for monitoring long distance WDM communication links using a line monitoring system suitable for legacy optically amplified long-haul undersea systems. This monitoring system is based on setting up a simple, passive, low cost high-loss optical loopback circuit at each repeater that provides a connection between the existing anti-directional undersea fibres, and can be used to define fault location. Fault location is achieved by transmitting a short pulse supervisory signal along with the WDM data signals where a portion of the overall signal is attenuated and returned to the transmit terminal by the loopback circuit. A special receiver is used at the terminal to extract the weakly returned supervisory signal where each supervisory signal is received at different times corresponding to different optical repeaters. Therefore, the degradation in any repeater appears on its corresponding supervisory signal level. We use a recirculating loop to simulate a 4600 km fibre link, on which a high-loss loopback supervisory system is implemented. Successful monitoring is accomplished through the production of an appropriate supervisory signal at the terminal that is detected and identified in a satisfactory time period after passing through up to 45 dB attenuation in the loopback circuit. © 2012 Elsevier B.V. All rights reserved.
Resumo:
This thesis presents improvements to optical transmission systems through the use of optical solitons as a digital transmission format, both theoretically and experimentally. An introduction to the main concepts and impairments of optical fibre on pulse transmission is included before introducing the concept of solitons in optically amplified communications and the problems of soliton system design. The theoretical work studies two fibre dispersion profiling schemes and a soliton launch improvement. The first provides superior pulse transmission by optimally tailoring the fibre dispersion to better follow the power, and hence nonlinearity, decay and thus allow soliton transmission for longer amplifier spacings and shorter pulse widths than normally possible. The second profiling scheme examines the use of dispersion compensating fibre in the context of soliton transmission over existing, standard fibre systems. The limits for solitons in uncompensated standard fibre are assessed, before the potential benefits of dispersion compensating fibre included as part of each amplifier are shown. The third theoretical investigation provides a simple improvement to the propagation of solitons in a highly perturbed system. By introducing a section of fibre of the correct length prior to the first system amplifier span, the soliton shape can be better coupled into the system thus providing an improved "average soliton" propagation model. The experimental work covers two areas. An important issue for soliton systems is pulse sources. Three potential lasers are studied, two ring laser configurations and one semiconductor device with external pulse shaping. The second area studies soliton transmission using a recalculating loop, reviewing the advantages and draw-backs of such an experiment in system testing and design. One particular example of employing the recirculating loop is also examined, using a novel method of pulse shape stabilisation over long distances with low jitter. The future for nonlinear optical communications is considered with the thesis conclusions.