5 resultados para Ammonia beccarii dextral, d13C

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature on the potential use of liquid ammonia as a solvent for the extraction of aromatic hydrocarbons from mixtures with paraffins, and the application of reflux, has been reviewed. Reference is made to extractors suited to this application. A pilot scale extraction plant was designed comprising a Scm. diameter by 12Scm. high, 50 stage Rotating Disc Contactor with 2 external settlers. Provision was made for operation with, or without, reflux at a pressure of 10 bar and ambient temperature. The solvent recovery unit consisted of an evaporator, compressor and condenser in a refrigeration cycle. Two systems were selected for study, Cumene-n-Heptane-Ammonia and Toluene-Methylcyclohexane-Ammonia. Equlibrium data for the first system was determined experimentally in a specially-designed, equilibrium bomb. A technique was developed to withdraw samples under pressure for analysis by chromatography and titration. The extraction plant was commissioned with a kerosine-water system; detailed operating procedures were developed based on a Hazard and Operability Study. Experimental runs were carried out with both ternary ammonia systems. With the system Toluene-Methylcyclohexane-Ammonia the extraction plant and the solvent recovery facility, operated satisfactorily, and safely,in accordance with the operating procedures. Experimental data gave reasonable agreement with theory. Recommendations are made for further work with plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Greenhouse gas emissions from fertiliser production are set to increase before stabilising due to the increasing demand to secure sustainable food supplies for a growing global population. However, avoiding the impacts of climate change requires all sectors to decarbonise by a very high level within several decades. Economically viable carbon reductions of substituting natural gas reforming with biomass gasification for ammonia production are assessed using techno-economic and life cycle assessment. Greenhouse gas savings of 65% are achieved for the biomass gasification system and the internal rate of return is 9.8% at base-line biomass feedstock and ammonia prices. Uncertainties in the assumptions have been tested by performing sensitivity analysis, which show, for example with a ±50% change in feedstock price, the rate of return ranges between -0.1% and 18%. It would achieve its target rate of return of 20% at a carbon price of £32/t CO, making it cost competitive compared to using biomass for heat or electricity. However, the ability to remain competitive to investors will depend on the volatility of ammonia prices, whereby a significant decrease would require high carbon prices to compensate. Moreover, since no such project has been constructed previously, there is high technology risk associated with capital investment. With limited incentives for industrial intensive energy users to reduce their greenhouse gas emissions, a sensible policy mechanism could target the support of commercial demonstration plants to help ensure this risk barrier is resolved. © 2013 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a techno-economic investigation of the generation of electricity from marine macroalgae (seaweed) in the UK (Part 1), and the production of anhydrous ammonia from synthesis gas (syngas) generated from biomass gasification (Part 2). In Part 1, the study covers the costs from macroalgae production to the generation of electricity via a CHP system. Seven scenarios, which varied the scale and production technique, were investigated to determine the most suitable scale of operation for the UK. Anaerobic digestion was established as the most suitable technology for macroalgae conversion to CHP, based on a number of criteria. All performance and cost data have been taken from published literature. None of the scenarios assessed would be economically viable under present conditions, although the use of large-scale electricity generation has more potential than small-scale localised production. Part 2 covers the costs from the delivery of the wood chip feedstock to the production of ammonia. Four cases, which varied the gasification process used and the scale of production, were investigated to determine the most suitable scale of operation for the UK. Two gasification processes were considered, these were O2-enriched air entrained flow gasification and Fast Internal Circulating Fluidised Bed. All performance and cost data have been taken from published literature, unless otherwise stated. Large-scale (1,200 tpd) ammonia production using O2-enriched air entrained flow gasification was determined as the most suitable system, producing the lowest ammonia-selling price, which was competitive to fossil fuels. Large-scale (1,200 tpd) combined natural gas/biomass syngas ammonia production also generated ammonia at a price competitive to fossil fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Greenhouse gas emissions from fertiliser production are set to increase before stabilising due to the increasing demand to secure sustainable food supplies for a growing global population. However, avoiding the impacts of climate change requires all sectors to decarbonise by a very high level within several decades. Economically viable carbon reductions of substituting natural gas reforming with biomass gasification for ammonia production are assessed using techno-economic and life cycle assessment. Greenhouse gas savings of 65% are achieved for the biomass gasification system and the internal rate of return is 9.8% at base-line biomass feedstock and ammonia prices. Uncertainties in the assumptions have been tested by performing sensitivity analysis, which show, for example with a ±50% change in feedstock price, the rate of return ranges between -0.1% and 18%. It would achieve its target rate of return of 20% at a carbon price of £32/t CO, making it cost competitive compared to using biomass for heat or electricity. However, the ability to remain competitive to investors will depend on the volatility of ammonia prices, whereby a significant decrease would require high carbon prices to compensate. Moreover, since no such project has been constructed previously, there is high technology risk associated with capital investment. With limited incentives for industrial intensive energy users to reduce their greenhouse gas emissions, a sensible policy mechanism could target the support of commercial demonstration plants to help ensure this risk barrier is resolved. © 2013 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The newly synthesized dioxaborine dyes, derivatives of dehydroacetic acid, were tested for the detection of amines and ammonia. To discriminate the substance with efficient sensing parameters, series of ca. 20 dioxaborine dyes were synthesized and tested for reactivity with amines. The most promising one showed the fluorescent sensitivity to amines in the range of 1-4 ppm. © (2014) Trans Tech Publications.