8 resultados para American Rolling Mill Company.
em Aston University Research Archive
Resumo:
Case studies in copper-alloy rolling mill companies showed that existing planning systems suffer from numerous shortcomings. Where computerised systems are in use, these tend to simply emulate older manual systems and still rely heavily on modification by experienced planners on the shopfloor. As the size and number of orders increase, the task of process planners, while seeking to optimise the manufacturing objectives and keep within the production constraints, becomes extremely complicated because of the number of options for mixing or splitting the orders into batches. This thesis develops a modular approach to computerisation of the production management and planning functions. The full functional specification of each module is discussed, together with practical problems associated with their phased implementation. By adapting the Distributed Bill of Material concept from Material Requirements Planning (MRP) philosophy, the production routes generated by the planning system are broken down to identify the rolling stages required. Then to optimise the use of material at each rolling stage, the system generates an optimal cutting pattern using a new algorithm that produces practical solutions to the cutting stock problem. It is shown that the proposed system can be accommodated on a micro-computer, which brings it into the reach of typical companies in the copper-alloy rolling industry, where profit margins are traditionally low and the cost of widespread use of mainframe computers would be prohibitive.
Resumo:
The manufacture of copper alloy flat rolled metals involves hot and cold rolling operations, together with annealing and other secondary processes, to transform castings (mainly slabs and cakes) into such shapes as strip, plate, sheet, etc. Production is mainly to customer orders in a wide range of specifications for dimensions and properties. However, order quantities are often small and so process planning plays an important role in this industry. Much research work has been done in the past in relation to the technology of flat rolling and the details of the operations, however, there is little or no evidence of any research in the planning of processes for this type of manufacture. Practical observation in a number of rolling mills has established the type of manual process planning traditionally used in this industry. This manual approach, however, has inherent drawbacks, being particularly dependent on the individual planners who gain their knowledge over a long span of practical experience. The introduction of the retrieval CAPP approach to this industry was a first step to reduce these problems. But this could not provide a long-term answer because of the need for an experienced planner to supervise generation of any plan. It also fails to take account of the dynamic nature of the parameters involved in the planning, such as the availability of resources, operation conditions and variations in the costs. The other alternative is the use of a generative approach to planning in the rolling mill context. In this thesis, generative methods are developed for the selection of optimal routes for single orders and then for batches of orders, bearing in mind equipment restrictions, production costs and material yield. The batch order process planning involves the use of a special cluster analysis algorithm for optimal grouping of the orders. This research concentrates on cold-rolling operations. A prototype model of the proposed CAPP system, including both single order and batch order planning options, has been developed and tested on real order data in the industry. The results were satisfactory and compared very favourably with the existing manual and retrieval methods.
Resumo:
Changes in modern structural design have created a demand for products which are light but possess high strength. The objective is a reduction in fuel consumption and weight of materials to satisfy both economic and environmental criteria. Cold roll forming has the potential to fulfil this requirement. The bending process is controlled by the shape of the profile machined on the periphery of the rolls. A CNC lathe can machine complicated profiles to a high standard of precision, but the expertise of a numerical control programmer is required. A computer program was developed during this project, using the expert system concept, to calculate tool paths and consequently to expedite the procurement of the machine control tapes whilst removing the need for a skilled programmer. Codifying the expertise of a human and the encapsulation of knowledge within a computer memory, destroys the dependency on highly trained people whose services can be costly, inconsistent and unreliable. A successful cold roll forming operation, where the product is geometrically correct and free from visual defects, is not easy to attain. The geometry of the sheet after travelling through the rolling mill depends on the residual strains generated by the elastic-plastic deformation. Accurate evaluation of the residual strains can provide the basis for predicting the geometry of the section. A study of geometric and material non-linearity, yield criteria, material hardening and stress-strain relationships was undertaken in this research project. The finite element method was chosen to provide a mathematical model of the bending process and, to ensure an efficient manipulation of the large stiffness matrices, the frontal solution was applied. A series of experimental investigations provided data to compare with corresponding values obtained from the theoretical modelling. A computer simulation, capable of predicting that a design will be satisfactory prior to the manufacture of the rolls, would allow effort to be concentrated into devising an optimum design where costs are minimised.
Resumo:
A detailed literature survey confirmed cold roll-forming to be a complex and little understood process. In spite of its growing value, the process remains largely un-automated with few principles used in set-up of the rolling mill. This work concentrates on experimental investigations of operating conditions in order to gain a scientific understanding of the process. The operating conditions are; inter-pass distance, roll load, roll speed, horizontal roll alignment. Fifty tests have been carried out under varied operating conditions, measuring section quality and longitudinal straining to give a picture of bending. A channel section was chosen for its simplicity and compatibility with previous work. Quality measurements were measured in terms of vertical bow, twist and cross-sectional geometric accuracy, and a complete method of classifying quality has been devised. The longitudinal strain profile was recorded, by the use of strain gauges attached to the strip surface at five locations. Parameter control is shown to be important in allowing consistency in section quality. At present rolling mills are constructed with large tolerances on operating conditions. By reduction of the variability in parameters, section consistency is maintained and mill down-time is reduced. Roll load, alignment and differential roll speed are all shown to affect quality, and can be used to control quality. Set-up time is reduced by improving the design of the mill so that parameter values can be measured and set, without the need for judgment by eye. Values of parameters can be guided by models of the process, although elements of experience are still unavoidable. Despite increased parameter control, section quality is variable, if only due to variability in strip material properties. Parameters must therefore be changed during rolling. Ideally this can take place by closed-loop feedback control. Future work lies in overcoming the problems connected with this control.
Resumo:
Guest editorial: This special issue has been drawn from papers that were published as part of the Second European Conference on Management of Technology (EuroMOT) which was held at Aston Business School (Birmingham, UK) 10-12 September 2006. This was the official European conference for the International Association for Management of Technology (IAMOT); the overall theme of the conference was “Technology and global integration.” There were many high-calibre papers submitted to the conference and published in the associated proceedings (Bennett et al., 2006). The streams of interest that emerged from these submissions were the importance of: technology strategy, innovation, process technologies, managing change, national policies and systems, research and development, supply chain technology, service and operational technology, education and training, small company incubation, technology transfer, virtual operations, technology in developing countries, partnership and alliance, and financing and investment. This special issue focuses upon the streams of interest that accentuate the importance of collaboration between different organisations. Such organisations vary greatly in character; for instance, they may be large or small, publicly or privately owned, and operate in manufacturing or service sectors. Despite these varying characteristics they all have something in common; they all stress the importance of inter-organisational collaboration as a critical success factor for their organisation. In today's global economy it is essential that organisations decide what their core competencies are what those of complementing organisations are. Core competences should be developed to become a bases of differentiation, leverage and competitive advantage, whilst those that are less mature should be outsourced to other organisations that can claim to have had more recognition and success in that particular core competence (Porter, 2001). This strategic trend can be observed throughout advanced economies and is growing strongly. If a posteriori reasoning is applied here it follows that organisations could continue to become more specialised in fewer areas whilst simultaneously becoming more dependent upon other organisations for critical parts of their operations. Such actions seem to fly in the face of rational business strategy and so the question must be asked: why are organisations developing this way? The answer could lie in the recent changes in endogenous and exogenous factors of the organisation; the former emphasising resource-based issues in the short-term, and strategic positioning in the long-term whilst the later emphasises transaction costs in the short-term and acquisition of new skills and knowledge in the long-term. For a harmonious balance of these forces to prevail requires organisations to firstly declare a shared meta-strategy, then to put some cross-organisational processes into place which have their routine operations automated as far as possible. A rolling business plan would review, assess and reposition each organisation within this meta-strategy according to how well they have contributed (Binder and Clegg, 2006). The important common issue here is that an increasing number of businesses today are gaining direct benefit from increasing their levels of inter-organisational collaboration. Such collaboration has largely been possible due to recent technological advances which can make organisational structures more agile (e.g. the extended or the virtual enterprise), organisational infra-structure more connected, and the sharing of real-time information an operational reality. This special issue consists of research papers that have explored the above phenomenon in some way. For instance, the role of government intervention, the use of internet-based technologies, the role of research and development organisations, the changing relationships between start-ups and established firms, the importance of cross-company communities of practice, the practice of networking, the front-loading of large-scale projects, innovation and the probabilistic uncertainties that organisations experience are explored in these papers. The cases cited in these papers are limited as they have a Eurocentric focus. However, it is hoped that readers of this special issue will gain a valuable insight into the increasing importance of collaborative practices via these studies.
Resumo:
Effluent from pulp and paper production at the Kemsley mill of Bowaters U.K. Paper Company Limited passes through two treatment stages before its discharge into the Swale estuary. Suspended material removed during treatment is deposited on wasteground as a thin sludge. The solids it contains are mainly wood components lost during pulp production, whilst it also has a high salt content, derived from chemicals used in pulping processes. After deposition the sludge undergoes an ageing process during which it dries out and its salt content is reduced. This ageing can be reproduced and accelerated by improved drainage under controlled conditions. The paper mill sludge was investigated as a casing medium in the culture of Agaricus bisporus (Lange) Pilat, the cultivated mushroom. It was unsuitable up to one year from deposition due largely to the inhibitory effect of its salt content on fruiting. Material eighteen months or more in age gave yields comparable to standard peat casing. Before use as a casing the material must be shredded to a satisfactory structure, neutralised with chalk, and pasteurised to eliminate organisms harmful to the crop. The prepared medium has a high water holding capacity and a structure resilient to management procedures, important requirements of a good casing. A passive movement of salts from the compost to the casing was shown to occur during culture, capable of enhancing the natural decline in cropping if sufficiently great. The ions chloride, potassium, sodium and sulphate were shown to be responsible, their damaging effects being due to high conductivity created in the casing. Studies of elements available during culture suggested phosphate availability in the compost could limit crop potential, whilst iron released by mycelium of A.bisporus in the casing may be utilised by associated micro-organisms.
Resumo:
A review of published literature was made to establish the fundamental aspects of rolling and allow an experimental programme to be planned. Simulated hot rolling tests, using pure lead as a model material, were performed on a laboratory mill to obtain data on load and torque when rolling square section stock. Billet metallurgy and consolidation of representative defects was studied when modelling the rolling of continuously cast square stock with a view to determining optimal reduction schedules that would result in a product having properties to the high level found in fully wrought billets manufactured from large ingots. It is difficult to characterize sufficiently the complexity of the porous central region in a continuously cast billet for accurate modelling. However, holes drilled into a lead billet prior to rolling was found to be a good means of assessing central void consolidation in the laboratory. A rolling schedule of 30% (1.429:1) per pass to a total of 60% (2.5:1) will give a homogeneous, fully recrystallized product. To achieve central consolidation, a total reduction of approximately 70% (3.333:1) is necessary. At the reduction necessary to achieve consolidation, full recrystallization is assured. A theoretical analysis using a simplified variational principle with experimentally derived spread data has been developed for a homogeneous material. An upper bound analysis of a single, centrally situated void has been shown to give good predictions of void closure with reduction and the reduction required for void closure for initial void area fractions 0.45%. A limited number of tests in the works has indicated compliance with the results for void closure obtained in the laboratory.
Resumo:
This investigation examined the process of the longitudinal rolling of tubes through a set of three driven grooved rolls. Tubes were rolled with or without internal support i.e. under mandrel rolling or sinking conditions. Knowledge was required of the way in which the roll separating force and rolling torque vary for different conditions of rolling. The objective of this work being to obtain a better understanding and optimization of the mechanics of the process. The design and instrumentation of a complete experimental three-roll mill for the rolling of lead tube as an analogue material for hot steel, with the measurement of the individual roll force and torque is described. A novel type of roll load cell was incorporated and its design and testing discussed. Employing three roll sizes of 170 mm, 255 mm and 340 mm shroud diameter, precise tube specimens of various tube diameter to thickness ratios were rolled under sinking and mandrel rolling conditions. To obtain an indication of the tube-roll contact areas some of the specimens were partially rolled. For comparative purposes the remaining tubes were completely rolled as a single pass. The roll forces, torques and tube parameters e.g. reduction of area, D/t ratio, were collated and compared for each of the three roll diameters considered. The influence of friction, particularly in the mandrel rolling process, was commented upon. Theoretical studies utilising the equilibrium and energy methods were applied to both the sinking and mandrel rolling processes. In general, the energy approach gave better comparison with experiment, especially for mandrel rolling. The influence of the tube deformation zones on the two processes was observed and on the subsequent modification of the tube-roll arc contact length. A rudimentary attempt was made in the theoretical sinking analysis to allow for the deformation zone prior to roll contact; some success was noted. A general survey of the available tube rolling literature, for both the sinking and mandrel processes has been carried out.