27 resultados para Aluminium in Cochin estuary
em Aston University Research Archive
Resumo:
By employing G75 gel-filtration chromotography, it has been demonstrated that human plasma gallium speciation (and by implication, Al speciation) is bimodal. Normally, gallium was predominantly bound to a high molecular weight fraction which was presumably transferrin. Literature reviews and experimental work throughout this thesis provided evidence to support this idea. An aluminium-transferrin species was assumed to be relatively non-toxic and a protective function for this complex has been suggested. A second, low molecular weight species of gallium was observed and its identity has been suggested to be citrate. The results of this thesis support the concept citrate was a gallium binding ligand present in the plasma, but there was another species (tentatively identified as phosphate) which bound gallium to a much greater degree than did citrate in the majority of samples studied. The consequence of a low molecular weight species of aluminium is the possibility that this leads to a more rapid, uncontrolled deposition of the metal in the brain compared to a transferrin mediated mechanism. Plasma speciation studies in Alzheimer's disease, Parkinson's disease, Down's syndrome, and neonates has revealed an altered ratio of the two gallium species found in control subjects. In all groups there was an increase in the potentially more neurotoxic low molecular weight species. These observations have led to a suggested mechanism of accumulation of metals in the brain, which is known to occur in the first three groups. Possible pathogenic mechanisms are described. The results can also offer an explanation to the reported increased sensitivity to the toxic effects of aluminium in the neonate. Speciation studies on normal plasma has shown the balance between high and low molecular weight species of gallium to be influenced by many physiological factors. There appears to be a fine equilibrium between both species which can be altered without any great difficulty. Therefore, in the diseased groups studied, it is possible that there are subtle biochemical changes within the circulatory system to affect the equilibrium which results in an increased low molecular weight species of aluminium. Furthermore, it has been demonstrated that there is a group of normal controls with no clinical signs of Alzheimer's or Parkinson's disease which have reduced transferrin binding. This indicates there is a population of healthy people who are at risk to the development of either disease.
Resumo:
An initial review of the subject emphasises the need for improved fuel efficiency in vehicles and the possible role of aluminium in reducing weight. The problems of formability generally in manufacture and of aluminium in particular are discussed in the light of published data. A range of thirteen commercially available sheet aluminium alloys have been compared with respect to mechanical properties as these affect forming processes and behaviour in service. Four alloys were selected for detailed comparison. The formability and strength of these were investigated in terms of underlying mechanisms of deformation as well as the microstructural characteristics of the alloys including texture, particle dispersion, grain size and composition. In overall terms, good combinations of strength and ductility are achievable with alloys of the 2xxx and 6xxx series. Some specific alloys are notably better than others. The strength of formed components is affected by paint baking in the final stages of manufacture. Generally, alloys of the 6xxx family are strengthened while 2xxx and 5xxx become weaker. Some anomalous behaviour exists, however. Work hardening of these alloys appears to show rather abrupt decreases over certain strain ranges which is probably responsible for the relatively low strains at which both diffuse and local necking occur. Using data obtained from extended range tensile tests, the strain distribution in more complex shapes can be successfully modelled using finite element methods.Sheet failure during forming occurs by abrupt shear fracture in many instances. This condition is favoured by states of biaxial tension, surface defects in the form of fine scratches and certain types of crystallographic texture. The measured limit strains of the materials can be understood on the basis of attainment of a critical shear stress for fracture.
Resumo:
The aim of this study was to establish levels of the enzymes involved in tetrahydrobiopterin (BH4) metabolism in human and rat brain preparations; to determine whether BH4 metabolism is altered in dementia, particularly in relation to senile dementia of the Alzheimer type (SDAT); and to examine the effect of aluminium on BH4 metabolism. Overall BH4 synthesis and dihydropteridine reductase (DHPR) activity were greater in the locus coeruleus than in the neocortex of elderly subjects. Sepiapterin reductase and DHPR activity showed a linear correlation with age in the temporal cortex. DHPR activity in the frontal cortex was relatively constant until the mid 60s and then fell with age. Overall BH4 synthesis showed a non-significant decline in temporal cortex and was significantly reduced in locus coeruleus preparations from SDAT subjects compared to control subjects. As DHPR, sepiapterin reductase and GTP cyclohydrolase activity were unaltered in SDAT we suggested that there is a lesion on the biosynthetic pathway between dihydroneopterin in triphosphate and BH4 in SDAT, possibly at the level of 6-pyruvoyl tetrahydropterin synthase. DHPR activity and BH4 synthesis capacity were unaltered in temporal cortex preparations from Huntingdon's disease subjects indicating that the defect in BH4 metabolism in SDAT is specific to the disease process and not a secondary consequence of dementia. The implications of altered BH4 metabolism in ageing and dementia are discussed. BH4 metabolism was examined in temporal and frontal cortex preparations from 4 subjects who had received peritoneal dialysis treatment. All patients had elevated serum aluminium levels. The data suggests that aluminium may inhibit DHPR activity in the frontal cortex resulting in diminished BH4 levels in the cells which leads to a compensatory increase in the activity of the biosynthetic pathway. Aluminium reversibly inhibited sepiapterin reductase activity in rat brain preparations but did not alter sepiapterin reductase activity in vivo. Overall BH4 synthesis and OTP cyclohydrolase activity were not affected by aluminium in vitro. The biosynthetic pathway was unaltered in rat brain preparations from animals receiving aluminium orally compared to control animals. DHPR activity was unaltered or increased in rat brain preparations from aluminium treated rats compared to the control group.
Resumo:
Suitable methods for the assessment of the effect of freeze-thaw action upon ceramic tiles have been determined. The results obtained have been shown to be reproducible with some work in this area still warranted. The analysis of Whichford Potteries clays via a variety of analytical techniques has shown them to be a complex mix of both clay and non-clay minerals. 57Fe Mössbauer spectroscopy has highlighted the presence of both small and large particleα-Fe203, removable via acid washing. 19F MAS NMR has demonstrated that the raw Whichford Pottery clays examined have negligible fluorine content. This is unlikely to be detrimental to ceramic wares during the heating process. A unique technique was used for the identification of fluorine in solid-state systems. The exchange of various cations into Wyoming Bentonite clay by microwave methodology did not show the appearance of five co-ordinate aluminium when examined by 27Al MAS NMR. The appearance of Qo silicate was linked to an increase in the amount of tetrahedrally bound aluminium in the silicate framework. This is formed as a result of the heating process. The analysis of two Chinese clays and two Chinese clay raw materials has highlighted a possible link between the two. These have also been shown to be a mix of both clay and non-clay minerals. Layered double hydroxides formed by conventional and microwave methods exhibited interesting characteristics. The main differences between the samples examined were not found to be solely attributable to the differences between microwave and conventional methods but more attributable to different experimental conditions used.
Resumo:
To investigate the neurotoxic effects of aluminium (Al) Al was administered: 1) in the diet of the rat (30 mg Al/kg body weight for 6 weeks); 2) as a suspension of aluminium acetate in drinking water of the rat for 3 months and 3) in a long-term study in the mouse in which aluminosilicates were incorporated into a pelleted diet (1035 mg/kg of food over 23 months). In the latter treatment, increased Al was combined with a reduction in calcium and magnesium; a treatment designed to increase absorption of Al into the body. Administration of Al in the drinking water significantly reduced total brain biopterins and BH4 synthesis. However, no significant affect of Al in the diet on total biopterins or BH4 synthesis was found either in the rat or in the long-term study in the mouse. In addition, in the mouse no significant effects of the Al diet on levels of noradrenaline, serotonin, dopamine, 5-HIAA or CAT could be demonstrated. Hence, the occurrence of brain alterations may depend on the Al species present and the method of administration. Al salts in drinking water may increase brain tissue levels compared with the administration of a more insoluble species. Since alterations in biopterin metabolism are also a feature of Alzheimer's disease (AD) these results support the hypothesis that Al in the water supply may be a factor in AD.
Resumo:
Smart structure sensors based on embedded fibre Bragg grating (FBG) arrays in aluminium alloy matrix by ultrasonic consolidation (UC) technique have been proposed and demonstrated successfully. The temperature, loading and bending responses of the embedded FBG arrays have been systematically characterized. The embedded FBGs exhibit an average temperature sensitivity of ~36 pm °C-1, which is three times higher than that of normal FBGs, a bending sensitivity of 0.73 nm/m-1 and a loading responsivity of ~0.1 nm kg-1 within the dynamic range from 0 kg to 3 kg. These initial experimental results clearly demonstrate that the UC produced metal matrix structures can be embedded with FBG sensor arrays to become smart structures with capabilities to monitor the structure operation and health conditions in applications.
Resumo:
Disturbances of spatial orientation are an early clinical component of senile dementia of the Alzheimer type (SDAT). since it has been suggested that an elevated aluminium intake associated with chronic nutritional deficiencies of calcium and magnesium may play an important role in the aetiology of SDAT, we have investigated the effect of such a dietary regime on the spatial orientation abilities of female C57BL6 mice using the Morris swimming pool test. Statistical analysis of the performances of control and experimental groups indicate that the ability to orientate towards a submerged and thus invisible platform is conistently and markedly impaired in the experimental group. The ability to orientate towards a visible platform is also significantly impaired although to a lesser extent. Analysis of the performances of individual animals demonstrate that this impairment of orientation in the experimental group only occurs in a sub-group of animals: the remainder display normal orientational ability.
Neurohistological consequences of a long-term diet enriched in Aluminium and reduced inCa2+ and Mg2+
Resumo:
To investigate the neurotoxic effects of aluminium (Al) three studies were carried out in which Al was administered: 1) in the diet, 2) as a suspension of aluminium acetate in drinking water and 3) a long-term study in which aluminosilicates were incorporated into a pelleted diet. Admistration of Al in the drinking water significantly reduced total brain biopterin. However, no significant affect of Al in the diet on total bipterins or BH4 synthesis was found.
Resumo:
The flash-pattern evoked potential difference (F - P) in man increases with age (93 subjects), correlates with decreasing cognitive ability and when it exceeds a unique critical level the subject is clinically diagnosed as having Alzheimer's disease. Aluminium accumulates in the human brain with age, increases the F - P value close to the critical value in a dose dependent manner, and at such a rate that normal environmental exposure to aluminium accounts for all or nearly all the F - P increases in man. Aluminium neurotoxicity is therefore a major cause of sporadic Alzheimer's disease.
Resumo:
Fatigue crack initiation and propagation in aluminium butt welds has been investigated. It is shown that the initiation of cracks from both buried defects and. from the weld reinforcement may be quantified by predictive laws based on either linear elastic fracture mechanics, or on Neuber's rule of stress and strain ooncentrations. The former is preferable on the grounds of theoretical models of crack tip plasticity, although either may be used as the basis of an effeotive design criteria against crack initiation. Fatigue lives fol1owing initiation were found to follow predictions based on the integration of a Paris type power law. The effect of residual stresses from the welding operation on both initiation and propagation was accounted for by a Forman type equation. This incorporated the notional stress ratio produced by the residual stresses after various heat treatments. A fracture mechanics analysis was found to be useful in describing the fatigue behaviour of the weldments at increased temperatures up to 300°C. It is pointed out, however, that the complex interaction of residual stresses, frequency, and changes in fracture mode necessitate great caution in the application of any general design criteria against crack initiation and growth at elevated. temperatures.