7 resultados para Algorithms to Activity of the Crew
em Aston University Research Archive
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The objective of this research was to investigate the effects of normal aging and the additional effects of chronic exposure to two experimental diets, one enriched in aluminium, the other enriched in lecithin, on aspects of the behaviour and brain histology of the female mouse. The aluminium diet was administered in an attempt to develop a rodent model of Dementia of the Alzheimer Type (DAT). With normal aging, almost all assessed aspects of behaviour were found to be impaired. As regards cognition, selective impairments of single-trial passive avoidance and Morris place learning were observed. While all aspects of open-field behaviour were impaired, the degree of impairment was directly related to the degree of motoric complexity. Deficits were also observed on non-visual sensorimotor coordination tasks and in olfactory discrimination. Histologically, neuron loss, gliosis, vacuolation and congophilic angiopathy were observed in several of the brain regions/fibre tracts believed to contribute to the control of some of the assessed behaviours. The aluminium treatment had very selective effects on both behaviour and brain histology, inducing several features observed in DAT. Behaviourally, the treatment induced impaired spatial reference memory; reduced ambulation; disturbed olfactory function and induced the premature development of the senile pattern of swimming. Histologically, significant neuron loss and gliosis were observed in the hippocampus, entorhinal cortex, amygdala, medial septum, pyriform and pr-frontal cortex. In addition, the brain distribution of congophilic angiopathy was significantly increased by the treatment. The lecithin treatment had effects on both non-cognitive and cognitive aspects of behaviour. The effects of aging on open-field ambulation and rearing were partially ameliorated by the treatment. A similar effect was observed for single-trial passive avoidance performance. Age-dependent improvements in acquisition/retention were observed in 17-23 month mice and Morris place task performance was improved in 11 and 17 month mice. Histologically, a partial sparing of neurons in the cerebellum, hippocampus, entorhinal cortex and subiculum was observed.
Resumo:
This thesis describes investigations upon pseudopeptides which were conducted to improve our understanding of the fate of synthetic macromolecules in cells and to develop approaches to influence that fate. The low uptake of molecules across the external cellular membrane is the principal barrier against effective delivery of therapeutic products to within the cell structure. In nature, disruption of this membrane by amphiphilic peptides plays a central role in the pathogenesis by bacterial and toxin infections. These amphiphilic peptides contain both hydrophobic and weakly charged hydrophilic amino acid residues and upon activation they become integrated into the lipid bilayers of the extracellular or endosomal membranes. The architectures of the pseudopeptides described here were designed to display similar pH dependent membrane rupturing activity to that of peptides derived from the influenza virus hemagglutinin HA-2. This HA protein promotes fusion of the influenza virus envelope with the cell endosome membrane due to a change in conformation in response to the acidic pH of the endosome lumen (pH 5.0-6.0). The pseudopeptides were obtained by the copolymerisation of L-lysine and L-lysine ethyl-ester with various dicarboxylic acid moieties. In this way a linear polyamide comprising of alternating pendant carboxylic acids and pendant hydrophobic moieties was made. At physiological pH (pH 7.4), electrostatic repulsion of pendant anionic carboxyl groups along the polymer backbone is sufficient to overcome the intramolecular association of the hydrophobic groups resulting in an extended conformation. At low pH (typically pH 4.8) loss of charge results in increased intramolecular hydrophobic association and the polymer chain collapses to a compact conformation, leading to precipitation of the polymer. Consequently, a conformation dependent functional property could be made to respond to small changes in the environmental pH. Pseudopepides were investigated for their cytoxicity towards a well known cell line, namely C26 (colorectal adenocarcinoma) and were shown through the use of a cell viability assay, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) to be well tolerated by C26 cells over a range of concentrations (2-500,μg/ml) at physiological pH (pH 7.4). A modified version of a shorter 30-minute coupled enzymatic assay, the LDH (lactate dehydrogenase) assay was used to evaluate the ability of the pseudopeptides to disrupt the membrane of two different cell lines (COS-1; African green monkey, kidney and A2780; human ovarian carcinoma) at low pH (pH 5.5). The cell membrane disruption property of the pseudopeptides was successfully demonstrated for COS-I and A2780 cell lines at this pH (pH 5.5). A variety of cell lines were chosen owing to limited availability and to compare the cytotoxic action of these pH responsive psudopeptides towards normal and tumorogenic cell lines. To investigate the intracellular delivery of one of the pseudopeptides, poly (L-lysine iso-phthalamide) and its subcellular location, a Cy3 bisamine fluorophore was conjugated into its backbone, at ratios of dye:lysine of 1:20, 1:30, 1:40, 1:60 and 1:80. Native polyacrylacrylamide gel electrophoresis (PAGE) and high voltage paper electrophoresis (HVPE) studies of the polydyes were conducted and provided evidence that that the Cy3 bisamine fluorophore was conjugated into the backbone of the polymer, poly (L-lysine iso-phthalamide). The subcellular fate of the fluorescentlylabelled "polydye" (hereafter PD20) was monitored by laser scanning confocal microscopy (LSCM) in CHO (Chinese hamster ovary) cells cultured in-vitro at various pH values (pH 7.4 and 5.0). LSCM images depicting time-dependent internalisation of PD20 indicated that PD20 traversed the extracellular membrane of CHO cells cultured in-vitro within ten minutes and migrated towards the endosomal regions where the pH is in the region of 5.0 to 6.0. Nuclear localisation of PD20 was demonstrated in a subpopulation of CHO cells. A further study was completed in CHO and HepG2 (hepatocellular carcinoma) cells cultured in-vitro using a lower molecular weight polymer to demonstrate that the molecular weight of "polydye" could be tailored to attain nuclear trafficking in cells. Prospective use of this technology encompasses a method of delivering a payload into a living cell based upon the hypercoiling nature of the pseudopeptides studied in this thesis and has led to a patent application (GB0228525.2; 20(2).
Resumo:
Zinc-a2-glycoprotein (ZAG) is an adipokine with the potential as a therapeutic agent in the treatment of obesity and type 2 diabetes. In this study we show that human ZAG, which is a 41-kDa protein, when administered to ob/ob mice at 50 µg/d-1 orally in the drinking water produced a progressive loss of body weight (5 g after 8 d treatment), together with a 0.5 C increase in rectal temperature and a 40% reduction in urinary excretion of glucose. There was also a 33% reduction in the area under the curve during an oral glucose tolerance test and an increased sensitivity to insulin. These results were similar to those after iv administration of ZAG. However, tryptic digestion was shown to inactivate ZAG. There was no evidence of human ZAG in the serum but a 2-fold elevation of murine ZAG, which was also observed in target tissues such as white adipose tissue. To determine whether the effect was due to interaction of the human ZAG with the ß-adrenergic (ß-AR) in the gastrointestinal tract before digestion, ZAG was coadministered to ob/ob mice together with propanolol (40 mg/kg-1), a nonspecific ß-AR antagonist. The effect of ZAG on body weight, rectal temperature, urinary glucose excretion, improvement in glucose disposal, and increased insulin sensitivity were attenuated by propanolol, as was the increase in murine ZAG in the serum. These results suggest that oral administration of ZAG increases serum levels through interaction with a ß-AR in the upper gastrointestinal tract, and gene expression studies showed this to be in the esophagus.
Resumo:
The ubiquitin-proteasome proteolytic pathway plays a major role in degradation of myofibrillar proteins in skeletal muscle during cancer cachexia. The end-product of this pathway is oligopeptides and these are degraded by the extralysomal peptidase tripeptidyl-peptidase II (TPPII) together with various aminopeptidases to form tripeptides and amino acids. To investigate if a relationship exists between the activity of the proteasome and TPPII, functional activities have been measured in gastrocnemius muscle of mice bearing the MAC16 tumour, and with varying extents of weight loss. TPPII activity was quantitated using the specific substrate Ala-Ala-Phe-7-amido-4-methylcoumarin, while proteasome activity was determined as the 'chymotrypsin-like' enzyme activity. Both proteasome proteolytic activity and TPPII activity increased in parallel with increasing weight loss, reaching a maximum at 16% weight loss, after which there was a progressive decrease in activity for both proteases with increasing weight loss. In murine myotubes, proteolysis-inducing factor, which is a sulphated glycoprotein produced by cachexia-inducing tumours, induced an increase in activity of both proteasome and TPPII, with an identical dose-response curve, and both activities were inhibited by eicosapentaenoic acid. These results suggest that the activities of both the proteasome and TPPII are regulated in a parallel manner in cancer cachexia, and that both are induced by the same factor and probably have the same intracellular signalling pathways and transcription factors. © 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The surface epithelial cells of the stomach represent a major component of the gastric barrier. A cell culture model of the gastric epithelial cell surface would prove useful for biopharmaceutical screening of new chemical entities and dosage forms. Primary cultures of guinea pig gastric mucous epithelial cells were grown on filter inserts (Transwells®) for 3 days. Tight-junction formation, assessed by transepithelial electrical resistance (TEER) and permeability of mannitol and fluorescein, was enhanced when collagen IV rather than collagen I was used to coat the polycarbonate filter. TEER for cells grown on collagen IV was close to that obtained with intact guinea pig gastric epithelium in vitro. Differentiation was assessed by incorporation of [ 3H]glucosamine into glycoprotein and by activity of NADPH oxidase, which produces superoxide. Both of these measures were greater for cells grown on filters coated with collagen I than for cells grown on plastic culture plates, but no major difference was found between cells grown on collagens I and IV. The proportion of cells, which stained positively for mucin with periodic acid Schiff reagent, was greater than 95% for all culture conditions. Monolayers grown on membranes coated with collagen IV exhibited apically polarized secretion of mucin and superoxide, and were resistant to acidification of the apical medium to pH 3.0 for 30 min. A screen of nonsteroidal anti-inflammatory drugs revealed a novel effect of diclofenac and niflumic acid in reversibly reducing permeability by the paracellular route. In conclusion, the mucous cell preparation grown on collagen IV represents a good model of the gastric surface epithelium suitable for screening procedures. © 2005 The Society for Biomolecular Screening.
Resumo:
A series of propylsulfonic (MCM-SOH) and octyl co-functionalised propylsulfonic (MCM-Oc-SOH) catalysts have been prepared by post modification of MCM-41 with mercaptopropyltrimethoxysilane (MPTS) to achieve SOH surface coverages spanning the range 0.12-1 monolayer. Within the MCM-Oc-SOH series, samples with submonolayer MPTS coverages were further grafted with octyltrimethoxysilane to cap bare hydroxyl sites and tune the hydrophobicity of the support. For the MCM-SO H series NH calorimetry revealed acid strength increases as a function of sulfonic acid loading, with -ΔH(NH ) increasing from 87 to 118 kJ mol. In contrast, MCM-Oc-SOH exhibits a dramatic enhancement of acid strength for submonolayer SOH coverages, with -ΔH(NH ) found to increase to 103 kJ mol. In line with these acid strength measurements the per-site activity of the MCM-SOH series in the esterification of butanol with acetic acid was found to increase with SOH content. Incorporation of octyl groups further promotes esterification activity of all the samples within the MCM-Oc-SOH series, such that the turn over frequency of the sample with the lowest loading of SOH more than doubles. Molecular dynamic simulations indicate that the interaction of isolated sulfonic acid groups with the pore walls is the primary cause of the decrease in acid strength and activity of submonolayer samples within the MCM-SOH series. Incorporation of octyl groups results in a combination of increased hydrophobicity and lateral interactions between adjacent sulfonic acid head groups, resulting in a striking enhancement of acid strength and esterification activity. © 2010 The Royal Society of Chemistry.