4 resultados para Algorithm Comparison

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate a digital back-propagation simplification method to enable computationally-efficient digital nonlinearity compensation for a coherently-detected 112 Gb/s polarization multiplexed quadrature phase shifted keying transmission over a 1,600 km link (20x80km) with no inline compensation. Through numerical simulation, we report up to 80% reduction in required back-propagation steps to perform nonlinear compensation, in comparison to the standard back-propagation algorithm. This method takes into account the correlation between adjacent symbols at a given instant using a weighted-average approach, and optimization of the position of nonlinear compensator stage to enable practical digital back-propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key problem with IEEE 802.11 technology is adaptation of the transmission rates to the changing channel conditions, which is more challenging in vehicular networks. Although rate adaptation problem has been extensively studied for static residential and enterprise network scenarios, there is little work dedicated to the IEEE 802.11 rate adaptation in vehicular networks. Here, the authors are motivated to study the IEEE 802.11 rate adaptation problem in infrastructure-based vehicular networks. First of all, the performances of several existing rate adaptation algorithms under vehicle network scenarios, which have been widely used for static network scenarios, are evaluated. Then, a new rate adaptation algorithm is proposed to improve the network performance. In the new rate adaptation algorithm, the technique of sampling candidate transmission modes is used, and the effective throughput associated with a transmission mode is the metric used to choose among the possible transmission modes. The proposed algorithm is compared to several existing rate adaptation algorithms by simulations, which shows significant performance improvement under various system and channel configurations. An ideal signal-to-noise ratio (SNR)-based rate adaptation algorithm in which accurate channel SNR is assumed to be always available is also implemented for benchmark performance comparison.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unwanted spike noise in a digital signal is a common problem in digital filtering. However, sometimes the spikes are wanted and other, superimposed, signals are unwanted, and linear, time invariant (LTI) filtering is ineffective because the spikes are wideband - overlapping with independent noise in the frequency domain. So, no LTI filter can separate them, necessitating nonlinear filtering. However, there are applications in which the noise includes drift or smooth signals for which LTI filters are ideal. We describe a nonlinear filter formulated as the solution to an elastic net regularization problem, which attenuates band-limited signals and independent noise, while enhancing superimposed spikes. Making use of known analytic solutions a novel, approximate path-following algorithm is given that provides a good, filtered output with reduced computational effort by comparison to standard convex optimization methods. Accurate performance is shown on real, noisy electrophysiological recordings of neural spikes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dedicated algorithm for sparse spectral representation of music sound is presented. The goal is to enable the representation of a piece of music signal as a linear superposition of as few spectral components as possible, without affecting the quality of the reproduction. A representation of this nature is said to be sparse. In the present context sparsity is accomplished by greedy selection of the spectral components, from an overcomplete set called a dictionary. The proposed algorithm is tailored to be applied with trigonometric dictionaries. Its distinctive feature being that it avoids the need for the actual construction of the whole dictionary, by implementing the required operations via the fast Fourier transform. The achieved sparsity is theoretically equivalent to that rendered by the orthogonal matching pursuit (OMP) method. The contribution of the proposed dedicated implementation is to extend the applicability of the standard OMP algorithm, by reducing its storage and computational demands. The suitability of the approach for producing sparse spectral representation is illustrated by comparison with the traditional method, in the line of the short time Fourier transform, involving only the corresponding orthonormal trigonometric basis.