25 resultados para Algebra of Errors
em Aston University Research Archive
Resumo:
The purpose of this paper is to demonstrate the existence of a strong and significant effect of complexity in aphasia independent from other variables including length. Complexity was found to be a strong and significant predictor of accurate repetition in a group of 13 Italian aphasic patients when it was entered in a regression equation either simultaneously or after a large number of other variables. Significant effects were found both when complexity was measured in terms of number of complex onsets (as in a recent paper by Nickels & Howard, 2004) and when it was measured in a more comprehensive way. Significant complexity effects were also found with matched lists contrasting simple and complex words and in analyses of errors. Effects of complexity, however, were restricted to patients with articulatory difficulties. Reasons for this association and for the lack of significant results in Nickels and Howard (2004) are discussed. © 2005 Psychology Press Ltd.
Resumo:
Current models of word production assume that words are stored as linear sequences of phonemes which are structured into syllables only at the moment of production. This is because syllable structure is always recoverable from the sequence of phonemes. In contrast, we present theoretical and empirical evidence that syllable structure is lexically represented. Storing syllable structure would have the advantage of making representations more stable and resistant to damage. On the other hand, re-syllabifications affect only a minimal part of phonological representations and occur only in some languages and depending on speech register. Evidence for these claims comes from analyses of aphasic errors which not only respect phonotactic constraints, but also avoid transformations which move the syllabic structure of the word further away from the original structure, even when equating for segmental complexity. This is true across tasks, types of errors, and, crucially, types of patients. The same syllabic effects are shown by apraxic patients and by phonological patients who have more central difficulties in retrieving phonological representations. If syllable structure was only computed after phoneme retrieval, it would have no way to influence the errors of phonological patients. Our results have implications for psycholinguistic and computational models of language as well as for clinical and educational practices.
Resumo:
We report the case of a neologistic jargonaphasic and ask whether her target-related and abstruse neologisms are the result of a single deficit, which affects some items more severely than others, or two deficits: one to lexical access and the other to phonological encoding. We analyse both correct/incorrect performance and errors and apply both traditional and formal methods (maximum-likelihood estimation and model selection). All evidence points to a single deficit at the level of phonological encoding. Further characteristics are used to constrain the locus still further. V.S. does not show the type of length effect expected of a memory component, nor the pattern of errors associated with an articulatory deficit. We conclude that her neologistic errors can result from a single deficit at a level of phonological encoding that immediately follows lexical access where segments are represented in terms of their features. We do not conclude, however, that this is the only possible locus that will produce phonological errors in aphasia, or, indeed, jargonaphasia.
Resumo:
The rapid global loss of biodiversity has led to a proliferation of systematic conservation planning methods. In spite of their utility and mathematical sophistication, these methods only provide approximate solutions to real-world problems where there is uncertainty and temporal change. The consequences of errors in these solutions are seldom characterized or addressed. We propose a conceptual structure for exploring the consequences of input uncertainty and oversimpli?ed approximations to real-world processes for any conservation planning tool or strategy. We then present a computational framework based on this structure to quantitatively model species representation and persistence outcomes across a range of uncertainties. These include factors such as land costs, landscape structure, species composition and distribution, and temporal changes in habitat. We demonstrate the utility of the framework using several reserve selection methods including simple rules of thumb and more sophisticated tools such as Marxan and Zonation. We present new results showing how outcomes can be strongly affected by variation in problem characteristics that are seldom compared across multiple studies. These characteristics include number of species prioritized, distribution of species richness and rarity, and uncertainties in the amount and quality of habitat patches. We also demonstrate how the framework allows comparisons between conservation planning strategies and their response to error under a range of conditions. Using the approach presented here will improve conservation outcomes and resource allocation by making it easier to predict and quantify the consequences of many different uncertainties and assumptions simultaneously. Our results show that without more rigorously generalizable results, it is very dif?cult to predict the amount of error in any conservation plan. These results imply the need for standard practice to include evaluating the effects of multiple real-world complications on the behavior of any conservation planning method.
Resumo:
This thesis is concerned with investigations of the effects of molecular encounters on nuclear magnetic resonance spin-lattice relaxation times, with particular reference to mesitylene in mixtures with cyclohexane and TMS. The purpose of the work was to establish the best theoretical description of T1 and assess whether a recently identified mechanism (buffeting), that influences n.m.r. chemical shifts, governs Tl also. A set of experimental conditions are presented that allow reliable measurements of Tl and the N. O. E. for 1H and 13C using both C. W. and F.T. n.m.r. spectroscopy. Literature data for benzene, cyclohexane and chlorobenzene diluted by CC14 and CS2 are used to show that the Hill theory affords the best estimation of their correlation times but appears to be mass dependent. Evaluation of the T1 of the mesitylene protons indicates that a combined Hill-Bloembergen-Purcell-Pound model gives an accurate estimation of T1; subsequently this was shown to be due to cancellation of errors in the calculated intra and intemolecular components. Three experimental methods for the separation of the intra and intermolecular relaxation times are described. The relaxation times of the 13C proton satellite of neat bezene, 1,4 dioxane and mesitylene were measured. Theoretical analyses of the data allow the calculation of Tl intra. Studies of intermolecular NOE's were found to afford a general method of separating observed T1's into their intra and intermolecular components. The aryl 1H and corresponding 13C T1 values and the NOE for the ring carbon of mesitylene in CC14 and C6H12-TMS have been used in combination to determine T1intra and T1inter. The Hill and B.P.P. models are shown to predict similarly inaccurate values for T1linter. A buffeting contribution to T1inter is proposed which when applied to the BPP model and to the Gutowsky-Woessner expression for T1inter gives an inaccuracy of 12% and 6% respectively with respect to theexperimentally based T1inter.
Resumo:
This work sets out to evaluate the potential benefits and pit-falls in using a priori information to help solve the Magnetoencephalographic (MEG) inverse problem. In chapter one the forward problem in MEG is introduced, together with a scheme that demonstrates how a priori information can be incorporated into the inverse problem. Chapter two contains a literature review of techniques currently used to solve the inverse problem. Emphasis is put on the kind of a priori information that is used by each of these techniques and the ease with which additional constraints can be applied. The formalism of the FOCUSS algorithm is shown to allow for the incorporation of a priori information in an insightful and straightforward manner. In chapter three it is described how anatomical constraints, in the form of a realistically shaped source space, can be extracted from a subject’s Magnetic Resonance Image (MRI). The use of such constraints relies on accurate co-registration of the MEG and MRI co-ordinate systems. Variations of the two main co-registration approaches, based on fiducial markers or on surface matching, are described and the accuracy and robustness of a surface matching algorithm is evaluated. Figures of merit introduced in chapter four are shown to given insight into the limitations of a typical measurement set-up and potential value of a priori information. It is shown in chapter five that constrained dipole fitting and FOCUSS outperform unconstrained dipole fitting when data with low SNR is used. However, the effect of errors in the constraints can reduce this advantage. Finally, it is demonstrated in chapter six that the results of different localisation techniques give corroborative evidence about the location and activation sequence of the human visual cortical areas underlying the first 125ms of the visual magnetic evoked response recorded with a whole head neuromagnetometer.
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
Resumo:
The number of fatal accidents in the agricultural, horticultural and forestry industry in Great Britain has declined from an annual rate of about 135 in the 1960's to its current level of about 50. Changes to the size and makeup of the population at risk mean that there has been no real improvement in fatal injury incidence rates for farmers. The Health and Safety Executives' (HSE) current system of accident investigation, recording, and analysis is directed primarily at identifying fault, allocating blame, and punishing wrongdoers. Relatively little information is recorded about the personal and organisational factors that contributed to, or failed to prevent accidents. To develop effective preventive strategies, it is important to establish whether errors by the victims and others, occur at the skills, rules, or knowledge level of functioning: are violations of some rule or procedure; or stem from failures to correctly appraise, or control a hazard. A modified version of the Hale and Glendon accident causation model was used to study 230 fatal accidents. Inspectors' original reports were examined and expert judgement applied to identify and categorise the errors committed by each of the parties involved. The highest proportion of errors that led directly to accidents occurred whilst the victims were operating at the knowledge level. The mix and proportion of errors varied considerably between different classes of victim and kind of accident. Different preventive strategies will be needed to address the problem areas identified.
Resumo:
The work described in this thesis concerns the application of radar altimetry, collected from the ERS-1 and TOPEX/POSEIDON missions, to precise satellite orbits computed at Aston University. The data is analysed in a long arc fashion to determine range biases, time tag biases, sea surface topographies and to assess the radial accuracy of the generated orbits through crossover analysis. A sea surface variability study is carried out for the North Sea using repeat altimeter profiles from ERS-1 and TOPEX/POSEIDON in order to verify two local U.K. models for ocean tide and storm surge effects. An on-side technique over the English Channel is performed to compute the ERS-1, TOPEX and POSEIDON altimeter range biases by using a combination of altimetry, precise orbits determined by short arc methods, tide gauge data, GPS measurements, geoid, ocean tide and storm surge models. The remaining part of the thesis presents some techniques for the short arc correction of long arc orbits. Validation of this model is achieved by way of comparison with actual SEASAT short arcs. Simulations are performed for the ERS-1 microwave tracking system, PRARE, using the range data to determine time dependent orbit corrections. Finally, a brief chapter is devoted to the recovery of errors in station coordinates by the use of multiple short arcs.
Resumo:
Huge advertising budgets are invested by firms to reach and convince potential consumers to buy their products. To optimize these investments, it is fundamental not only to ensure that appropriate consumers will be reached, but also that they will be in appropriate reception conditions. Marketing research has focused on the way consumers react to advertising, as well as on some individual and contextual factors that could mediate or moderate the ad impact on consumers (e.g. motivation and ability to process information or attitudes toward advertising). Nevertheless, a factor that potentially influences consumers’ advertising reactions has not yet been studied in marketing research: fatigue. Fatigue can yet impact key variables of advertising processing, such as cognitive resources availability (Lieury 2004). Fatigue is felt when the body warns to stop an activity (or inactivity) to have some rest, allowing the individual to compensate for fatigue effects. Dittner et al. (2004) defines it as “the state of weariness following a period of exertion, mental or physical, characterized by a decreased capacity for work and reduced efficiency to respond to stimuli.’’ It signals that resources will lack if we continue with the ongoing activity. According to Schmidtke (1969), fatigue leads to troubles in information reception, in perception, in coordination, in attention getting, in concentration and in thinking. In addition, for Markle (1984) fatigue generates a decrease in memory, and in communication ability, whereas it increases time reaction, and number of errors. Thus, fatigue may have large effects on advertising processing. We suggest that fatigue determines the level of available resources. Some research about consumer responses to advertising claim that complexity is a fundamental element to take into consideration. Complexity determines the cognitive efforts the consumer must provide to understand the message (Putrevu et al. 2004). Thus, we suggest that complexity determines the level of required resources. To study this complex question about need and provision of cognitive resources, we draw upon Resource Matching Theory. Anand and Sternthal (1989, 1990) are the first to state the Resource Matching principle, saying that an ad is most persuasive when the resources required to process it match the resources the viewer is willing and able to provide. They show that when the required resources exceed those available, the message is not entirely processed by the consumer. And when there are too many available resources comparing to those required, the viewer elaborates critical or unrelated thoughts. According to the Resource Matching theory, the level of resource demanded by an ad can be high or low, and is mostly determined by the ad’s layout (Peracchio and Myers-Levy, 1997). We manipulate the level of required resources using three levels of ad complexity (low – high – extremely high). On the other side, the resource availability of an ad viewer is determined by lots of contextual and individual variables. We manipulate the level of available resources using two levels of fatigue (low – high). Tired viewers want to limit the processing effort to minimal resource requirements by making heuristics, forming overall impression at first glance. It will be easier for them to decode the message when ads are very simple. On the contrary, the most effective ads for viewers who are not tired are complex enough to draw their attention and fully use their resources. They will use more analytical strategies, looking at the details of the ad. However, if ads are too complex, they will be too difficult to understand. The viewer will be discouraged to process information and will overlook the ad. The objective of our research is to study fatigue as a moderating variable of advertising information processing. We run two experimental studies to assess the effect of fatigue on visual strategies, comprehension, persuasion and memorization. In study 1, thirty-five undergraduate students enrolled in a marketing research course participated in the experiment. The experimental design is 2 (tiredness level: between subjects) x 3 (ad complexity level: within subjects). Participants were randomly assigned a schedule time (morning: 8-10 am or evening: 10-12 pm) to perform the experiment. We chose to test subjects at various moments of the day to obtain maximum variance in their fatigue level. We use Morningness / Eveningness tendency of participants (Horne & Ostberg, 1976) as a control variable. We assess fatigue level using subjective measures - questionnaire with fatigue scales - and objective measures - reaction time and number of errors. Regarding complexity levels, we have designed our own ads in order to keep aspects other than complexity equal. We ran a pretest using the Resource Demands scale (Keller and Bloch 1997) and by rating them on complexity like Morrison and Dainoff (1972) to check for our complexity manipulation. We found three significantly different levels. After having completed the fatigue scales, participants are asked to view the ads on a screen, while their eye movements are recorded by the eye-tracker. Eye-tracking allows us to find out patterns of visual attention (Pieters and Warlop 1999). We are then able to infer specific respondents’ visual strategies according to their level of fatigue. Comprehension is assessed with a comprehension test. We collect measures of attitude change for persuasion and measures of recall and recognition at various points of time for memorization. Once the effect of fatigue will be determined across the student population, it is interesting to account for individual differences in fatigue severity and perception. Therefore, we run study 2, which is similar to the previous one except for the design: time of day is now within-subjects and complexity becomes between-subjects
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
Resumo:
Research on aphasia has struggled to identify apraxia of speech (AoS) as an independent deficit affecting a processing level separate from phonological assembly and motor implementation. This is because AoS is characterized by both phonological and phonetic errors and, therefore, can be interpreted as a combination of deficits at the phonological and the motoric level rather than as an independent impairment. We apply novel psycholinguistic analyses to the perceptually phonological errors made by 24 Italian aphasic patients. We show that only patients with relative high rate (>10%) of phonetic errors make sound errors which simplify the phonology of the target. Moreover, simplifications are strongly associated with other variables indicative of articulatory difficulties - such as a predominance of errors on consonants rather than vowels -but not with other measures - such as rate of words reproduced correctly or rates of lexical errors. These results indicate that sound errors cannot arise at a single phonological level because they are different in different patients. Instead, different patterns: (1) provide evidence for separate impairments and the existence of a level of articulatory planning/programming intermediate between phonological selection and motor implementation; (2) validate AoS as an independent impairment at this level, characterized by phonetic errors and phonological simplifications; (3) support the claim that linguistic principles of complexity have an articulatory basis since they only apply in patients with associated articulatory difficulties.
Resumo:
We quantify the error statistics and patterning effects in a 5x 40 Gbit/s WDM RZ-DBPSK SMF/DCF fibre link using hybrid Raman/EDFA amplification. We propose an adaptive constrained coding for the suppression of errors due to patterning effects. It is established, that this coding technique can greatly reduce the bit error rate (BER) value even for large BER (BER > 101). The proposed approach can be used in the combination with the forward error correction schemes (FEC) to correct the errors even when real channel BER is outside the FEC workspace.
Resumo:
This thesis address the creation of fibre Bragg grating based sensors and the fabrication systems which are used to manufacture them. The information is presented primarily with experimental evidence, backed up with the current theoretical concepts. The issues involved in fabricating high quality fibre Bragg gratings are systematically investigated. Sources of errors in the manufacturing processes are detected, analysed and reduced to allow higher quality gratings to be fabricated. The use of chirped Moiré gratings as distributed sensors is explored, the spatial resolution is increased beyond that of any previous work and the use of the gratings as distributed load sensors is also presented. Chirped fibre Bragg gratings are shown to be capable of operating as in-situ wear sensors, capable of accurately measuring the wear or erosion of the surface of a material. Two methods of measuring the wear are compared, giving a comparison between an expensive high resolution method and a cheap lower resolution method. The wear sensor is also shown to be capable of measuring the physical size and location of damage induced on the surface of a material. An array method is demonstrated to provide a high survivability such that the array may be damaged yet operate with minimal degradation in performance.
Resumo:
This thesis is about the study of relationships between experimental dynamical systems. The basic approach is to fit radial basis function maps between time delay embeddings of manifolds. We have shown that under certain conditions these maps are generically diffeomorphisms, and can be analysed to determine whether or not the manifolds in question are diffeomorphically related to each other. If not, a study of the distribution of errors may provide information about the lack of equivalence between the two. The method has applications wherever two or more sensors are used to measure a single system, or where a single sensor can respond on more than one time scale: their respective time series can be tested to determine whether or not they are coupled, and to what degree. One application which we have explored is the determination of a minimum embedding dimension for dynamical system reconstruction. In this special case the diffeomorphism in question is closely related to the predictor for the time series itself. Linear transformations of delay embedded manifolds can also be shown to have nonlinear inverses under the right conditions, and we have used radial basis functions to approximate these inverse maps in a variety of contexts. This method is particularly useful when the linear transformation corresponds to the delay embedding of a finite impulse response filtered time series. One application of fitting an inverse to this linear map is the detection of periodic orbits in chaotic attractors, using suitably tuned filters. This method has also been used to separate signals with known bandwidths from deterministic noise, by tuning a filter to stop the signal and then recovering the chaos with the nonlinear inverse. The method may have applications to the cancellation of noise generated by mechanical or electrical systems. In the course of this research a sophisticated piece of software has been developed. The program allows the construction of a hierarchy of delay embeddings from scalar and multi-valued time series. The embedded objects can be analysed graphically, and radial basis function maps can be fitted between them asynchronously, in parallel, on a multi-processor machine. In addition to a graphical user interface, the program can be driven by a batch mode command language, incorporating the concept of parallel and sequential instruction groups and enabling complex sequences of experiments to be performed in parallel in a resource-efficient manner.