2 resultados para AlO

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to improve some of the less desirable properties of bio-oil via the catalytic fast pyrolysis of sugarcane bagasse using a novel supported molybdenum carbide (20 wt.% MoC/AlO ) catalyst. Proximate and elemental analysis of the bagasse were carried out to determine the moisture, ash, carbon, hydrogen, nitrogen and oxygen content. The ground pellets were classified in sieves to a size range of 0.25-1 mm and were pyrolysed in a 300 g h fluidised bed reactor at 500 C. MoC/AlO replaced the sand in the fluidised bed reactor in different proportions (0 wt.%, 12 wt.%, 25 wt.% and 50 wt.%) to investigate the effect of this catalyst on the pyrolysis products. Bio-oil yield results showed that ground sugarcane bagasse pellets gave high organic yields in the bio-oil of 60.5 wt.% on dry feed with a total liquid yield of 73.1 wt.% on dry feed without catalyst. Increasing the catalyst proportions in the fluidised bed reduced bio-oil yields, significantly reduced sugars (as a-levoglucosan) concentration and increased furanics and phenolics concentration in the bio-oil. It was observed that the higher the concentration of the 20 wt.% MoC/AlO catalyst in the fluidised bed the lower the viscosity of the bio-oil. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mg-Al hydrotalcite coatings have been grown on alumina via a novel alkali- and nitrate-free impregnation route and subsequent calcination and hydrothermal treatment. The resulting Mg-HT/AlO catalysts significantly outperform conventional bulk hydrotalcites prepared via co-precipitation in the transesterification of C-C triglycerides for fatty acid methyl ester (FAME) production, with rate enhancements increasing with alkyl chain length. This promotion is attributed to improved accessibility of bulky triglycerides to active surface base sites over the higher area alumina support compared to conventional hydrotalcites wherein many active sites are confined within the micropores. © 2014 The Royal Society of Chemistry.