3 resultados para Airframes

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents for the first time the concept of measurement assisted assembly (MAA) and outlines the research priorities of the realisation of this concept in the industry. MAA denotes a paradigm shift in assembly for high value and complex products and encompasses the development and use of novel metrology processes for the holistic integration and capability enhancement of key assembly and ancillary processes. A complete framework for MAA is detailed showing how this can facilitate a step change in assembly process capability and efficiency for large and complex products, such as airframes, where traditional assembly processes exhibit the requirement for rectification and rework, use inflexible tooling and are largely manual, resulting in cost and cycle time pressures. The concept of MAA encompasses a range of innovativemeasurement- assisted processes which enable rapid partto- part assembly, increased use of flexible automation, traceable quality assurance and control, reduced structure weight and improved levels of precision across the dimensional scales. A full scale industrial trial of MAA technologies has been carried out on an experimental aircraft wing demonstrating the viability of the approach while studies within 140 smaller companies have highlighted the need for better adoption of existing process capability and quality control standards. The identified research priorities for MAA include the development of both frameless and tooling embedded automated metrology networks. Other research priorities relate to the development of integrated dimensional variation management, thermal compensation algorithms as well as measurement planning and inspection of algorithms linking design to measurement and process planning. © Springer-Verlag London 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurement assisted assembly (MAA) has the potential to facilitate a step change in assembly efficiency for large structures such as airframes through the reduction of rework, manually intensive processes and expensive monolithic assembly tooling. It is shown how MAA can enable rapid part-to-part assembly, increased use of flexible automation, traceable quality assurance and control, reduced structure weight and improved aerodynamic tolerances. These advances will require the development of automated networks of measurement instruments; model based thermal compensation, the automatic integration of 'live' measurement data into variation simulation and algorithms to generate cutting paths for predictive shimming and drilling processes. This paper sets out an architecture for digital systems which will enable this integrated approach to variation management. © 2013 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Full text: With the rapid development of the aerospace industry, manufacturing technologies have to continuously develop and adjust themselves to ever-growing demands coming from more complex component designs and the use of highly engineered materials. Today there is an increased number of manufacturers contributing to the realization of final products, i.e. avionics, so it is easy to perceive the truly globalized dimension of the aerospace manufacturing business. With this comes the demand for further engineering developments on which the academic/industrial research institutes need to deliver solutions to real aerospace manufacturing problems. This is a challenging task since aerospace manufacturing technologies have to cover a wide range of materials (from composites to advanced Ni/Ti alloys), processes (from forging to non-traditional machining and assembly), and parts’ dimensions/batch sizes (from airframes to turbine blades). In this wide context, this Special Issue includes high quality theoretical and experimental scientific contributions on the following topics related to the aerospace manufacturing technology: (a) machining of advance aerospace alloys; (b) abrasive processes applied to aerospace components; (c) surface treatments to enhance fatigue performance of aerospace components; (d) joining and assembly of aerospace components; (e) laser machining of aerospace alloys; (f) automated/supervised manufacture of aerospace components; (g) quality supervision of aerospace manufacturing routes. The breadth of topics in this Special Issue is perhaps indicative of the complexity and challenges that the research related to aerospace manufacturing technology can offer. We hope that this issue will act as a catalyst for the development of further research, academic and industrial interactions, and publications related to aerospace manufacturing technologies for the benefit of the academic and industrial research communities.