16 resultados para Air traffic control.
em Aston University Research Archive
Resumo:
The research was instigated by the Civil Aviation Authority (CAA) to examine the implications for air traffic controllers' (ATCO) job satisfaction of the possible introduction of systems incorporating computer-assisted decision making. Additional research objectives were to assess the possible costs of reductions in ATCO job satisfaction, and to recommend appropriate task allocation between ATCOs and computer for future systems design (Chapter 1). Following a review of the literature (Chapter 2) it is argued that existing approaches to systems and job design do not allow for a sufficiently early consideration of employee needs and satisfactions in the design of complex systems. The present research develops a methodology for assessing affective reactions to an existing system as a basis for making reommendations for future systems design (Chapter 3). The method required analysis of job content using two techniques: (a) task analysis (Chapter 4.1) and (b) the Job Diagnostic Survey (JDS). ATCOs' affective reactions to the several operational positions on which they work were investigated at three levels of detail: (a) Reactions to positions, obtained by ranking techniques (Chapter 4.2); (b) Reactions to job characteristics, obtained by use of JDS (Chapter 4.3); and (c) Reactions to tasks, obtained by use of Repertory Grid technique (Chapter 4.4). The conclusion is drawn that ATCOs' motivation and satisfaction is greatly dependent on the presence of challenge, often through tasks requiring the use of decision making and other cognitive skills. Results suggest that the introduction of systems incorporating computer-assisted decision making might result in financial penalties for the CAA and significant reductions in job satisfaction for ATCOs. General recommendations are made for allocation of tasks in future systems design (Chapter 5).
Resumo:
B-ISDN is a universal network which supports diverse mixes of service, applications and traffic. ATM has been accepted world-wide as the transport technique for future use in B-ISDN. ATM, being a simple packet oriented transfer technique, provides a flexible means for supporting a continuum of transport rates and is efficient due to possible statistical sharing of network resources by multiple users. In order to fully exploit the potential statistical gain, while at the same time provide diverse service and traffic mixes, an efficient traffic control must be designed. Traffic controls which include congestion and flow control are a fundamental necessity to the success and viability of future B-ISDN. Congestion and flow control is difficult in the broadband environment due to the high speed link, the wide area distance, diverse service requirements and diverse traffic characteristics. Most congestion and flow control approaches in conventional packet switched networks are reactive in nature and are not applicable in the B-ISDN environment. In this research, traffic control procedures mainly based on preventive measures for a private ATM-based network are proposed and their performance evaluated. The various traffic controls include CAC, traffic flow enforcement, priority control and an explicit feedback mechanism. These functions operate at call level and cell level. They are carried out distributively by the end terminals, the network access points and the internal elements of the network. During the connection set-up phase, the CAC decides the acceptance or denial of a connection request and allocates bandwidth to the new connection according to three schemes; peak bit rate, statistical rate and average bit rate. The statistical multiplexing rate is based on a `bufferless fluid flow model' which is simple and robust. The allocation of an average bit rate to data traffic at the expense of delay obviously improves the network bandwidth utilisation.
Resumo:
This research was originally undertaken to aid the Jamaican government and the World Bank in making funding decisions relative to improvement of road systems and traffic control in Jamaica. An investigation of the frequency and causes of road accidents and an evaluation of their impact on the Jamaican economy were carried out, and a model system which might be applied was developed. It is believed that the importance of road accident economic and manpower losses to the survival of developing countries, such as Jamaica, cannot be overemphasized. It is suggested that the World Bank, in cooperation with national governments, has a role to play in alleviating this serious problem. Data was collected from such organizations as the Jamaica Ministry of Construction, Police Department, the World Bank, and the World Health Organization. A variety of methodologies were utilized to organize this data in useful and understandable forms. The most important conclusion of this research is that solvable problems in road systems and in traffic control result in the unnecessary loss of useful citizens, in both developed and developing countries. However, a lack of information and understanding regarding the impact of high rates of road accident death and injury on the national economy and stability of a country results in an apparent lack of concern. Having little internal expertise in the field of road accident prevention, developing countries usually hire consultants to help them address this problem. In the case of Jamaica, this practice has resulted in distrust and hard feelings between the Jamaican authorities and major organizations involved in the field. Jamaican officials have found confusing the recommendations of most experts contracted to study traffic safety. The attempts of foreign consultants to utilize a technological approach (the use of coding systems and computers), methods which do not appear cost-effective for Jamaica, have resulted in the expenditure of limited funds for studies which offer no feasible approach to the problem. This funding limitation, which hampers research and road improvement, could be alleviated by such organizations as the World Bank. The causes of high accident rates are many, it was found. Formulation of a plan to address this serious problem must take into account the current failure to appreciate the impact of a high level of road accidents on national economy and stability, inability to find a feasible approach to the problem, and inadequate funding. Such a plan is discussed in detail in the main text of this research.
Resumo:
Automotive catalysts are the most effective short-term answer to air pollution from automobiles. Since strict control of exhaust emissions is, or will be,covered by legislation in most developed countries in the world, catalytic devices will be increasingly fitted to cars. There is consequently an urgent need for the development of catalysts that will not compete for scarce precious metal resources. A number of problems have already been identified in connection with base metal catalysts but quantitative investigations are lacking. The base metal reduction catalysts developed by Imperial Chemical Industries Limited, catalysts and Chemical Group, in collaboration with the Air Pollution Control Laboratory, B L Cars Limited for automotive emission control, are susceptible to de-activation by three major mechanisms. These are: physical loss of the wash-coat (a high surface area coating which supports the active species), aggregation of the active species and poisoning by fuel and engine oil additives. This thesis is especially concerned with the first two of these and attempts to indicate the relative magnitude .of their effect on the activity of. the catalysts. Aggregation of the active species or sintering, as it is loosely called, was studied by using impregnated granules to overcome effects due to the loss of the wash-coat. Samples were aged in a synthetic exhaust gas, free from poisons, and metal crystallite sizes were measured by scanning-electron microscopy. The increase in particle size was correlated with the loss in catalytic activity. In order to maintain a link with the real conditions of service a number of monolithic catalysts were tested in an engine-dynamometer and several previously tested endurance catalysts were examined. A mechanism is proposed for the break-up and subsequent 10s.5 of the wash-coat and suggestions for improved resistance to loss of the' coating and active species are proposed.
Resumo:
Flow control in Computer Communication systems is generally a multi-layered structure, consisting of several mechanisms operating independently at different levels. Evaluation of the performance of networks in which different flow control mechanisms act simultaneously is an important area of research, and is examined in depth in this thesis. This thesis presents the modelling of a finite resource computer communication network equipped with three levels of flow control, based on closed queueing network theory. The flow control mechanisms considered are: end-to-end control of virtual circuits, network access control of external messages at the entry nodes and the hop level control between nodes. The model is solved by a heuristic technique, based on an equivalent reduced network and the heuristic extensions to the mean value analysis algorithm. The method has significant computational advantages, and overcomes the limitations of the exact methods. It can be used to solve large network models with finite buffers and many virtual circuits. The model and its heuristic solution are validated by simulation. The interaction between the three levels of flow control are investigated. A queueing model is developed for the admission delay on virtual circuits with end-to-end control, in which messages arrive from independent Poisson sources. The selection of optimum window limit is considered. Several advanced network access schemes are postulated to improve the network performance as well as that of selected traffic streams, and numerical results are presented. A model for the dynamic control of input traffic is developed. Based on Markov decision theory, an optimal control policy is formulated. Numerical results are given and throughput-delay performance is shown to be better with dynamic control than with static control.
Resumo:
Open-loop operatlon of the stepping motor exploits the inherent advantages of the machine. For near optimum operation: in this mode, however, an accurate system model is required to facilitate controller design. Such a model must be comprehensive and take account of the non-linearities inherent in the system. The result is a complex formulation which can be made manageable with a computational aid. A digital simulation of a hybrid type stepping motor and its associated drive circuit is proposed. The simulation is based upon a block diagram model which includes reasonable approximations to the major non-linearities. The simulation is shown to yield accurate performance predictions. The determination of the transfer functions is based upon the consideration of the physical processes involved rather than upon direct input-outout measurements. The effects of eddy currents, saturation, hysteresis, drive circuit characteristics and non-linear torque displacement characteristics are considered and methods of determining transfer functions, which take account of these effects, are offered. The static torque displacement characteristic is considered in detail and a model is proposed which predicts static torque for any combination of phase currents and shaft position. Methods of predicting the characteristic directly from machine geometry are investigated. Drive circuit design for high efficiency operation is considered and a model of a bipolar, bilevel circuit is proposed. The transfers between stator voltage and stator current and between stator current and air gap flux are complicated by the effects of eddy currents, saturation and hysteresis. Frequency response methods, combined with average inductance measurements, are shown to yield reasonable transfer functions. The modelling procedure and subsequent digital simulation is concluded to be a powerful method of non-linear analysis.
Resumo:
Compared to packings trays are more cost effective column internals because they create a large interfacial area for mass transfer by the interaction of the vapour on the liquid. The tray supports a mass of froth or spray which on most trays (including the most widely used sieve trays) is not in any way controlled. The two important results of the gas/liquid interaction are the tray efficiency and the tray throughput or capacity. After many years of practical experience, both may be predicted by empirical correlations, despite the lack of understanding. It is known that the tray efficiency is in part determined by the liquid flow pattern and the throughput by the liquid froth height which in turn depends on the liquid hold-up and vapour velocity. This thesis describes experimental work on sieve trays in an air-water simulator, 2.44 m in diameter. The liquid flow pattern, for flow rates similar to those used in commercial scale distillation, was observed experimentally by direct observation; by water-cooling, to simulate mass transfer; use of potassium permanganate dye to observe areas of longer residence time; and by height of clear liquid measurements across the tray and in the downcomer using manometers. This work presents experiments designed to evaluate flow control devices proposed to improve the gas liquid interaction and hence improve the tray efficiency and throughput. These are (a) the use of intermediate weirs to redirect liquid to the sides of the tray so as to remove slow moving/stagnant liquid and (b) the use of vapour-directing slots designed to use the vapour to cause liquid to be directed towards the outlet weir thus reducing the liquid hold-up at a given rate i.e. increased throughput. This method also has the advantage of removing slow moving/stagnant liquid. In the experiments using intermediate weirs, which were placed in the centre of the tray. it was found that in general the effect of an intermediate weir depends on the depth of liquid downstream of the weir. If the weir is deeper than the downstream depth it will cause the upstream liquid to be deeper than the downstream liquid. If the weir is not as deep as deep as the downstream depth it may have little or no effect on the upstream depth. An intermediate weir placed at an angle to the direction of flow of liquid increases the liquid towards the sides of the tray without causing an increase in liquid hold-up/ froth height. The maximum proportion of liquid caused to flow sideways by the weir is between 5% and 10%. Experimental work using vapour-directing slots on a rectangular sieve tray has shown that the horizontal momentum that is imparted to the liquid is dependent upon the size of the slot. If too much momentum is transferred to the liquid it causes hydraulic jumps to occur at the mouth of the slot coupled with liquid being entrained, The use of slots also helps to eliminate the hydraulic gradient across sieve trays and provides a more uniform froth height on the tray. By comparing the results obtained of the tray and point efficiencies, it is shown that a slotted tray reduces both values by approximately 10%. This reduction is due to the fact that with a slotted tray the liquid has a reduced residence time Ion the tray coupled also with the fact that large size bubbles are passing through the slots. The effectiveness of using vapour-directing slots on a full circular tray was investigated by using dye to completely colour the biphase. The removal of the dye by clear liquid entering the tray was monitored using an overhead camera. Results obtained show that the slots are successful in their aim of reducing slow moving liquid from the sides of the tray, The net effect of this is an increase in tray efficiency. Measurements of slot vapour-velocity found it to be approximately equal to the hole velocity.
Resumo:
Prior to the development of a production standard control system for ML Aviation's plan-symmetric remotely piloted helicopter system, SPRITE, optimum solutions to technical requirements had yet to be found for some aspects of the work. This thesis describes an industrial project where solutions to real problems have been provided within strict timescale constraints. Use has been made of published material wherever appropriate, new solutions have been contributed where none existed previously. A lack of clearly defined user requirements from potential Remotely Piloted Air Vehicle (RPAV) system users is identified, A simulation package is defined to enable the RPAV designer to progress with air vehicle and control system design, development and evaluation studies and to assist the user to investigate his applications. The theoretical basis of this simulation package is developed including Co-axial Contra-rotating Twin Rotor (CCTR), six degrees of freedom motion, fuselage aerodynamics and sensor and control system models. A compatible system of equations is derived for modelling a miniature plan-symmetric helicopter. Rigorous searches revealed a lack of CCTR models, based on closed form expressions to obviate integration along the rotor blade, for stabilisation and navigation studies through simulation. An economic CCTR simulation model is developed and validated by comparison with published work and practical tests. Confusion in published work between attitude and Euler angles is clarified. The implementation of package is discussed. dynamic adjustment of assessment. the theory into a high integrity software Use is made of a novel technique basing the integration time step size on error Simulation output for control system stability verification, cross coupling of motion between control channels and air vehicle response to demands and horizontal wind gusts studies are presented. Contra-Rotating Twin Rotor Flight Control System Remotely Piloted Plan-Symmetric Helicopter Simulation Six Degrees of Freedom Motion ( i i)
Resumo:
This thesis describes an investigation into methods for controlling the mode distribution in multimode optical fibres. The major contributions presented in this thesis are summarised below. Emerging standards for Gigabit Ethernet transmission over multimode optical fibre have led to a resurgence of interest in the precise control, and specification, of modal launch conditions. In particular, commercial LED and OTDR test equipment does not, in general, comply with these standards. There is therefore a need for mode control devices, which can ensure compliance with the standards. A novel device consisting of a point-load mode-scrambler in tandem with a mode-filter is described in this thesis. The device, which has been patented, may be tuned to achieve a wide range of mode distributions and has been implemented in a ruggedised package for field use. Various other techniques for mode control have been described in this work, including the use of Long Period Gratings and air-gap mode-filters. Some of the methods have been applied to other applications, such as speckle suppression and in sensor technology. A novel, self-referencing, sensor comprising two modal groups in the Mode Power Distribution has been designed and tested. The feasibility of a two-channel Mode Group Diversity Multiplexed system has been demonstrated over 985m. A test apparatus for measuring mode distribution has been designed and constructed. The apparatus consists of a purpose-built video microscope, and comprehensive control and analysis software written in Visual Basic. The system may be fitted with a Silicon camera or an InGaAs camera, for measurement in the 850nm and 130nm transmission windows respectively. A limitation of the measurement method, when applied to well-filled fibres, has been identified and an improvement to the method has been proposed, based on modelled Laguerre Gauss field solutions.
Resumo:
Dedicated short range communications (DSRC) was proposed for collaborative safety applications (CSA) in vehicle communications. In this article we propose two adaptive congestion control schemes for DSRC-based CSA. A cross-layer design approach is used with congestion detection at the MAC layer and traffic rate control at the application layer. Simulation results show the effectiveness of the proposed rate control scheme for adapting to dynamic traffic loads.
Resumo:
Orthogonal frequency division multiplexing (OFDM) is becoming a fundamental technology in future generation wireless communications. Call admission control is an effective mechanism to guarantee resilient, efficient, and quality-of-service (QoS) services in wireless mobile networks. In this paper, we present several call admission control algorithms for OFDM-based wireless multiservice networks. Call connection requests are differentiated into narrow-band calls and wide-band calls. For either class of calls, the traffic process is characterized as batch arrival since each call may request multiple subcarriers to satisfy its QoS requirement. The batch size is a random variable following a probability mass function (PMF) with realistically maximum value. In addition, the service times for wide-band and narrow-band calls are different. Following this, we perform a tele-traffic queueing analysis for OFDM-based wireless multiservice networks. The formulae for the significant performance metrics call blocking probability and bandwidth utilization are developed. Numerical investigations are presented to demonstrate the interaction between key parameters and performance metrics. The performance tradeoff among different call admission control algorithms is discussed. Moreover, the analytical model has been validated by simulation. The methodology as well as the result provides an efficient tool for planning next-generation OFDM-based broadband wireless access systems.
Resumo:
Dedicated Short Range Communication (DSRC) is a promising technique for vehicle ad-hoc network (VANET) and collaborative road safety applications. As road safety applications require strict quality of services (QoS) from the VANET, it is crucial for DSRC to provide timely and reliable communications to make safety applications successful. In this paper we propose two adaptive message rate control algorithms for low priority safety messages, in order to provide highly available channel for high priority emergency messages while improve channel utilization. In the algorithms each vehicle monitors channel loads and independently controls message rate by a modified additive increase and multiplicative decrease (AIMD) method. Simulation results demonstrated the effectiveness of the proposed rate control algorithms in adapting to dynamic traffic load.
Resumo:
Intelligent transport system (ITS) has large potentials on road safety applications as well as nonsafety applications. One of the big challenges for ITS is on the reliable and cost-effective vehicle communications due to the large quantity of vehicles, high mobility, and bursty traffic from the safety and non-safety applications. In this paper, we investigate the use of dedicated short-range communications (DSRC) for coexisting safety and non-safety applications over infrastructured vehicle networks. The main objective of this work is to improve the scalability of communications for vehicles networks, ensure QoS for safety applications, and leave as much as possible bandwidth for non-safety applications. A two-level adaptive control scheme is proposed to find appropriate message rate and control channel interval for safety applications. Simulation results demonstrated that this adaptive method outperforms the fixed control method under varying number of vehicles. © 2012 Wenyang Guan et al.
Resumo:
It has been reported that high-speed communication network traffic exhibits both long-range dependence (LRD) and burstiness, which posed new challenges in network engineering. While many models have been studied in capturing the traffic LRD, they are not capable of capturing efficiently the traffic impulsiveness. It is desirable to develop a model that can capture both LRD and burstiness. In this letter, we propose a truncated a-stable LRD process model for this purpose, which can characterize both LRD and burstiness accurately. A procedure is developed further to estimate the model parameters from real traffic. Simulations demonstrate that our proposed model has a higher accuracy compared to existing models and is flexible in capturing the characteristics of high-speed network traffic. © 2012 Springer-Verlag GmbH.