4 resultados para Air content
em Aston University Research Archive
Resumo:
The literature pertaining to the key stages of spray drying has been reviewed in the context of the mathematical modelling of drier performance. A critical review is also presented of previous spray drying models. A new mathematical model has been developed for prediction of spray drier performance. This is applicable to slurries of rigid, porous crust-forming materials to predict trajectories and drying profiles for droplets with a distribution of sizes sprayed from a centrifugal pressure nozzle. The model has been validated by comparing model predictions to experimental data from a pilot-scale counter-current drier and from a full-scale co-current drier. For the latter, the computed product moisture content was within 2%, and the computed air exit temperature within 10oC of experimental data. Air flow patterns have been investigated in a 1.2m diameter transparent countercurrent spray tower by flow visualisation. Smoke was introduced into various zones within the tower to trace the direction, and gauge the intensity, of the air flow. By means of a set of variable-angle air inlet nozzles, a variety of air entry configurations was investigated. The existence of a core of high rotational and axial velocity channelling up the axis of the tower was confirmed. The stability of flow within the core was found to be strongly dependent upon the air entry arrangement. A probe was developed for the measurement of air temperature and humidity profiles. This was employed for studying evaporation of pure water drops in a 1.2m diameter pilot-scale counter-current drier. A rapid approach to the exit air properties was detected within a 1m distance from the air entry ports. Measured radial profiles were found to be virtually flat but, from the axial profiles, the existence of plug-flow, well-mixed-flow and some degree of air short-circuiting can be inferred. The model and conclusions should assist in the improved design and optimum operation of industrial spray driers.
Resumo:
This doctoral research project examines the effects that geographical transience has on Royal Air Force families. The methodology employed in this exploratory and qualitative study consisted largely of open-ended interview questions but also included a series of demographic variables. In total, 29 RAF personnel without families, 33 RAF personnel with families, 33 RAF spouses, and 15 RAF children participated in this research (N = 110). All respondents volunteered to take part in the study and were based in the United Kingdom at the time of data collection. The interviews were transcribed and content coded according to six major relocation themes arising from the literature (change, tasks, support, coping, difficulty, and outcome). QSR NVIVO 2.0, a qualitative data analysis software package, was used to facilitate the process. Through the utilisations of qualitative methodology, the researcher was able to offer various novel and reoccurring variables that appear to play an important role (at least subjectively) in relocation. Additionally, frequencies associated with these factors were presented. The findings were integrated with those from the literature in order to offer an initial comparison and differentiation between civilian and military samples. The main theoretical contributions were the introduction of the concept of mobile mentality, the creation of a novel relocation model that takes familial interaction into account, and the development of a taxonomy for the classification of relocation outcomes. Finally, additional observations, recommendations for future research, and practical implications are reviewed.
Resumo:
The research was instigated by the Civil Aviation Authority (CAA) to examine the implications for air traffic controllers' (ATCO) job satisfaction of the possible introduction of systems incorporating computer-assisted decision making. Additional research objectives were to assess the possible costs of reductions in ATCO job satisfaction, and to recommend appropriate task allocation between ATCOs and computer for future systems design (Chapter 1). Following a review of the literature (Chapter 2) it is argued that existing approaches to systems and job design do not allow for a sufficiently early consideration of employee needs and satisfactions in the design of complex systems. The present research develops a methodology for assessing affective reactions to an existing system as a basis for making reommendations for future systems design (Chapter 3). The method required analysis of job content using two techniques: (a) task analysis (Chapter 4.1) and (b) the Job Diagnostic Survey (JDS). ATCOs' affective reactions to the several operational positions on which they work were investigated at three levels of detail: (a) Reactions to positions, obtained by ranking techniques (Chapter 4.2); (b) Reactions to job characteristics, obtained by use of JDS (Chapter 4.3); and (c) Reactions to tasks, obtained by use of Repertory Grid technique (Chapter 4.4). The conclusion is drawn that ATCOs' motivation and satisfaction is greatly dependent on the presence of challenge, often through tasks requiring the use of decision making and other cognitive skills. Results suggest that the introduction of systems incorporating computer-assisted decision making might result in financial penalties for the CAA and significant reductions in job satisfaction for ATCOs. General recommendations are made for allocation of tasks in future systems design (Chapter 5).
Resumo:
OBJECTIVES: The aim of this study was to investigate the influence of process parameters during dry coating on particle and dosage form properties upon varying the surface adsorbed moisture of microcrystalline cellulose (MCC), a model filler/binder for orally disintegrating tablets (ODTs). METHODS: The moisture content of MCC was optimised using the spray water method and analysed using thermogravimetric analysis. Microproperty/macroproperty assessment was investigated using atomic force microscopy, nano-indentation, scanning electron microscopy, tablet hardness and disintegration testing. KEY FINDINGS: The results showed that MCC demonstrated its best flowability at a moisture content of 11.2% w/w when compared to control, comprising of 3.9% w/w moisture. The use of the composite powder coating process (without air) resulted in up to 80% increase in tablet hardness, when compared to the control. The study also demonstrated that surface adsorbed moisture can be displaced upon addition of excipients during dry processing circumventing the need for particle drying before tabletting. CONCLUSIONS: It was concluded that MCC with a moisture content of 11% w/w provides a good balance between powder flowability and favourable ODT characteristics.