18 resultados para Aging of materials
em Aston University Research Archive
Resumo:
An international round robin study of the viscosity measurements and aging of fast pyrolysis bio-oil has been undertaken recently, and this work is an outgrowth from that effort. Two bio-oil samples were distributed to two laboratories for accelerated aging tests and to three laboratories of long-term aging studies. The accelerated aging test was defined as the change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C. The test was repeated 10 times over consecutive days to determine the intra-laboratory repeatability of the method. Other bio-oil samples were placed in storage at three temperatures, 21, 5, and -17 °C, for a period of up to 1 year to evaluate the change in viscosity. The variation in the results of the accelerated aging test was shown to be low within a given laboratory. The long-term aging studies showed that storage of a filtered bio-oil under refrigeration can minimize the amount of change in viscosity. The accelerated aging test gave a measure of change similar to that of 6-12 months of storage at room temperature for a filtered bio-oil. Filtration of solids was identified as a key contributor to improving the stability of the bio-oil as expressed by the viscosity based on results of the accelerated aging tests as well as long-term aging studies. Only the filtered bio-oil consistently gave useful results in the accelerated aging and long-term aging studies. The inconsistency suggests that better protocols need to be developed for sampling bio-oils. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace. © 2012 American Chemical Society.
Resumo:
The literature relating to the principles and practice of drying of materials, particularly those susceptible to thermal degradation or undesirable loss of volatile components, has been reviewed. Single droplets of heat-sensitive materials were dried whilst suspended in a horizontal wind tunnel from a specially-designed, rotating thermocouple which enabled direct observation of drying behaviour and continuous measurement of droplet temperature as drying progressed. The effects of drying air temperature and initial solids concentration on the potency of various antibiotics, viz. ampicillin, chloramphenicol, oxytetracycline, streptomycin and tetracycline, were assessed using a modified Drug Sensitivity Testing technique. Only ampicillin was heat-sensitive at temperatures above 100°C, e.g. at an air temperature of 115°C its zone diameter was reduced from 100% to 45%. Selected enzymes, viz. dextran sucrase and invertase, were also dried and their residual activities determined by High Performance Liquid Chromatography. The residual activity of dextran sucrase was rapidly reduced at temperatures above 65°C, and the residual activity of invertase reduced rapidly at temperatures above 65°C; but drying with short residence times will retain most of its activity. The performance of various skin-forming encapsulants, viz. rice and wheat starch, dextrin, coffee, skim milk, fructose, gelatine 60 and 150 Bloom, and gum arabic, was evaluated to determine their capabilities for retention of ethanol as a model volatile, under different operating conditions. The effects of initial solids concentration, air velocity and temperature were monitored for each material tested. Ethanol content was analysed by Gas Liquid Chromatography and in some cases dried crusts were removed for examination. Volatiles retention was concluded to depend in all cases upon the rate and nature of the skin formation and selective diffusion phenomena. The results provided further insight into the inter-relationship between temperature, residence time and thermal degradation of heat-sensitive materials. They should also assist in selection of the preferred dryer for such materials, and of the operating parameter to enable maximum retention of the required physico-chemical characteristics in the dried materials.
Resumo:
In the present work the neutron emission spectra from a graphite cube, and from natural uranium, lithium fluoride, graphite, lead and steel slabs bombarded with 14.1 MeV neutrons were measured to test nuclear data and calculational methods for D - T fusion reactor neutronics. The neutron spectra measured were performed by an organic scintillator using a pulse shape discrimination technique based on a charge comparison method to reject the gamma rays counts. A computer programme was used to analyse the experimental data by the differentiation unfolding method. The 14.1 MeV neutron source was obtained from T(d,n)4He reaction by the bombardment of T - Ti target with a deuteron beam of energy 130 KeV. The total neutron yield was monitored by the associated particle method using a silicon surface barrier detector. The numerical calculations were performed using the one-dimensional discrete-ordinate neutron transport code ANISN with the ZZ-FEWG 1/ 31-1F cross section library. A computer programme based on Gaussian smoothing function was used to smooth the calculated data and to match the experimental data. There was general agreement between measured and calculated spectra for the range of materials studied. The ANISN calculations carried out with P3 - S8 calculations together with representation of the slab assemblies by a hollow sphere with no reflection at the internal boundary were adequate to model the experimental data and hence it appears that the cross section set is satisfactory and for the materials tested needs no modification in the range 14.1 MeV to 2 MeV. Also it would be possible to carry out a study on fusion reactor blankets, using cylindrical geometry and including a series of concentric cylindrical shells to represent the torus wall, possible neutron converter and breeder regions, and reflector and shielding regions.
Resumo:
This thesis criticises many psychological experiments on 'pornography' which attempt to demonstrate how 'pornography' causes and/or equals rape. It challenges simplistic definitions of 'pornography', arguing that sexually explicit materials (SEM) are constructed and interpreted in a number of different ways; and demonstrates that how, when and where materials are depicted or viewed will influence perceptions and reactions. In addition, it opposes the overreliance on male undergraduates as participants in 'porn' research. Theories of feminist psychology and reflexivity are used throughout the thesis, and provide a detailed contextual framework in a complex area. Results from a number of interlinking studies which use a variety of methodological approaches (focus groups, questionnaires and content analysis), indicate how contextual issues are omitted in much existing research on SEM. These include the views and experiences participants' hold prior to completing SEM studies; their opinions about those who 'use' 'pornography'; their understanding of key terms linked with SEM (eg: pornography and erotica); and discussions of sexual magazines aimed at male and female audiences. Participants' reactions to images and texts associated with SEM presented in different contexts are discussed. Three main conclusions are drawn from this thesis. Firstly, images deemed 'pornographic' differ through historical and cultural periods' and political, economic and social climates, so 'experimental' approaches may not always be the most appropriate research tool. Secondly, there is not one definition, source, or factor which may be named 'pornography'; and thirdly the context and presentation of materials influence how images are perceived and reacted to. The thesis argues a number of factors influence view of 'pornography', suggesting SEM may be 'in the eye of the beholder'.
Resumo:
The aim of the research project was to gain d complete and accurate accounting of the needs and deficiencies of materials selection and design data, with particular attention given to the feasibility of a computerised materials selection system that would include application analysis, property data and screening techniques. The project also investigates and integrates the three major aspects of materials resources, materials selection and materials recycling. Consideration of the materials resource base suggests that, though our discovery potential has increased, geologic availability is the ultimate determinant and several metals may well become scarce at the same time, thus compounding the problem of substitution. With around 2- to 20- million units of engineering materials data, the use of a computer is the only logical answer for scientific selection of materials. The system developed at Aston is used for data storage, mathematical computation and output. The system enables programs to be run in batch and interactive (on-line) mode. The program with modification can also handle such variables as quantity of mineral resources, energy cost of materials and depletion and utilisation rates of strateqic materials. The work also carries out an in-depth study of copper recycling in the U.K. and concludes that, somewhere in the region of 2 million tonnes of copper is missing from the recycling cycle. It also sets out guidelines on product design and conservation policies from the recyclability point of view.
Resumo:
Tensile tests were carried out using specimens of 2009 aluminium alloy reinforced by either SiC whiskers or particles. The size distributions of the whiskers and particles in the matrix were obtained by image analysis. It was found that failure was a result of uniform void nucleation and coalescence in the as fabricated composites, or a result of fast crack propagation initiated by a flaw developed at clusters of SiC in the aged or stretched and aged composites. The strengths of the as fabricated composites were estimated based on the results of image analysis using continuum mechanics and dislocation theories. The estimation indicated that the tensile strengths are largely contributed to by composite strengthening, supplemented by residual dislocation strengthening and work hardening. Owing to the flaw controlled failure, the tensile strengths of the aged or stretched and aged composites were independent of aging time, aging temperature, and the amount of stretching. The elastic moduli of the composites were estimated using the Halpin-Tsai model and a good correlation was found between the measured and estimated moduli. © 1996 The Institute of Materials.
Resumo:
The aging responses of 2124 Al-SiC p metal matrix composite (MMC) and unreinforced matrix alloy are studied and related to variations in tensile properties. The MMC is aged from Wo starting conditions: (i) stretched and naturally aged and (ii) re-solution treated. Accelerated aging occurs in both MMC conditions compared with unreinforced alloy. Tensile strengths and elastic moduli are improved in the MMC compared with the alloy, but ductility is reduced. Stretched MMC exhibits higher strength but lower ductility and modulus than re-solutioned MMC. The re-solutioned MMC fails by microvoid coalescence in low aging conditions, and by void nucleation and shear in high aging conditions. Failure of the stretched MMC initiates at the surface at specimen shoulders, illustrating the increased notch sensitivity of this condition, and propagates via a zigzag shear fracture mode. Zigzag facet size increases on gross aging. Particle fracture occurs during tensile failure, but also before testing as a result of the manufacturing process. © 1995 The Institute of Materials.
Resumo:
A study has been made of the influence of the reinforcement/matrix interfacial strength on fatigue crack propagation in a powder metallurgy aluminum alloy 8090-SiC particulate composite. The interfacial region has been altered by two separate routes, the first involving aging of the 8090 matrix, with the subsequent formation of precipitate free zones at the boundaries, and the second consisting of oxidizing the surface of the SiC particles before their incorporation into the composite. In the naturally aged condition, oxidation of the SiC leads to a reduction in fatigue crack growth resistance at higher values of stress intensity range ΔK. This is due to a proportion of the crack growth occurring through voids formed in association with many of the weak SiC interfaces which have retained a layer of thick surface oxide after processing. On overaging no difference in crack growth rate is discernible between the oxidized and unoxidized SiC composites. It is proposed that this is due to similar levels of interfacial weakening having occurred in both composites, indicating that this is an important factor in the reduction of the high ΔK crack growth resistance of the unoxidized SiC composite on aging.
Resumo:
Aluminide diffusion coatings are frequently employed to enhance the oxidation resistance of nickel base superalloys. However, there is a concern that the presence of an aluminide coating could influence the properties of the coated superalloy, especially in respect of fatigue behaviour. To understand the nature of the effects of surface coatings on the fatigue properties of superalloys, an understanding of microstructural development within both the coating and the coating/substrate interfacial zone during high temperature fatigue testing is necessary. This paper is concerned with microstructural changes in aluminide diffusion coatings on single crystal γ′ strengthened superalloy substrates during the course of high temperature fatigue testing. The 'edge on' transmission electron microscopy technique is employed to study cross-sections of two stage (aluminization plus diffusion treatment) coated superalloy samples. The paper examines the degradation of the coating produced by phase transformations induced by loss of aluminum from the coating and/or aging of the coating. Aluminum removal both by interdiffusion with the substrate and by oxidation of the coating surface is considered. Microstructural development in the portion of the substrate influenced by interdiffusion with the coating is also discussed.
Resumo:
The microstructural stability of aluminide diffusion coatings, prepared by means of a two-stage pack-aluminization treatment on single-crystal nickel-base superalloy substrates, is considered in this article. Edge-on specimens of coated superalloy are studied using transmission electron microscopy (TEM). The effects of coating thickness and post-coating heat treatment (duration, temperature, and atmosphere) on coating microstructure are examined. The article discusses the partial transformation of the matrix of the coating, from a B2-type phase (nominally NiAl) to a L12 phase (nominally Ni3(Al, Ti)), during exposure at temperatures of 850 °C and 950 °C in air and in vacuum for up to 138 hours. Three possible processes that can account for decom- position of the coating matrix are investigated, namely, interdiffusion between the coating and the substrate, oxidation of the coating surface, and aging of the coating. Of these processes, aging of the coating is shown to be the predominant factor in the coating transformation under the conditions considered. © 1992 The Minerals, Metals and Materials Society, and ASM International.
Resumo:
Nanoporous phospho-tungstate organic-inorganic hybrid materials have been synthesized from sodium tungstate and mono-n-dodecyl phosphate (MDP), which was used as both surfactant and phosphorus precursor. These hybrid materials were thoroughly characterized by N2 adsorption, elemental analysis, powder XRD, FTIR, Raman, TG, TEM and XPS and possess lamellar structures with interlayer spacings of 3.2 nm. A plausible method for formation of hybrid materials comprised of lacunary Keggin anions and micelles of surfactants is proposed. © The Royal Society of Chemistry 2008.
Resumo:
Pyrolytic recycling of materials for electronics and automotive is attractive because of the possibility of recovery of fuel and of precious metals from printed circuit. Due to the complexity of their composition an appropriate pre-treatment has to be performed in order to limit the evolution of dangerous halogen containing compounds which strongly impair the fuel quality. An advantageous pyrolysis approach implies the attempt of mineralisation of the organic bromine to the not volatile and harmless inorganic form using strong bases such as NaOH and KOH to reduce the amount of volatile and increasing the residue. The char stability is greatly variable depending on the substrate. Mg(OH)2 and Ca(OH)2 behave in a similar manner but to a lower extent. Carbonates and reducing agent such as LiAlH have been tested as well and their ability to scavenge bromine is discussed in terms of effectiveness and mechanism.
Resumo:
Permanent deformation and fracture may develop simultaneously when an asphalt mixture is subjected to a compressive load. The objective of this research is to separate viscoplasticity and viscofracture from viscoelasticity so that the permanent deformation and fracture of the asphalt mixtures can be individually and accurately characterized without the influence of viscoelasticity. The undamaged properties of 16 asphalt mixtures that have two binder types, two air void contents, and two aging conditions are first obtained by conducting nondestructive creep tests and nondestructive dynamic modulus tests. Testing results are analyzed by using the linear viscoelastic theory in which the creep compliance and the relaxation modulus are modeled by the Prony model. The dynamic modulus and phase angle of the undamaged asphalt mixtures remained constant with the load cycles. The undamaged asphalt mixtures are then used to perform the destructive dynamic modulus tests in which the dynamic modulus and phase angle of the damaged asphalt mixtures vary with load cycles. This indicates plastic evolution and crack propagation. The growth of cracks is signaled principally by the increase of the phase angle, which occurs only in the tertiary stage. The measured total strain is successfully decomposed into elastic strain, viscoelastic strain, plastic strain, viscoplastic strain, and viscofracture strain by employing the pseudostrain concept and the extended elastic-viscoelastic correspondence principle. The separated viscoplastic strain uses a predictive model to characterize the permanent deformation. The separated viscofracture strain uses a fracture strain model to characterize the fracture of the asphalt mixtures in which the flow number is determined and a crack speed index is proposed. Comparisons of the 16 samples show that aged asphalt mixtures with a low air void content have a better performance, resisting permanent deformation and fracture. © 2012 American Society of Civil Engineers.
Resumo:
Asphalt mixtures have been demonstrated to be anisotropic materials in both laboratory and field tests. The anisotropy of asphalt mixtures consists of inherent anisotropy and stress-induced anisotropy. In previous work, the inherent anisotropy of asphalt mixtures was quantified by using only the inclination angles of the coarse aggregate particles in the asphalt mixtures. However, the inclination of fine aggregates also has a contribution to the inherent anisotropy. Moreover, the contribution to the inherent anisotropy of each aggregate may not be the same as in the previous work but will depend on the size, orientation, and sphericity of the aggregate particle. This paper quantifies the internal microstructure of the aggregates in asphalt mixtures by using an aggregate-related geometric parameter, the vector magnitude. The original formulation of the vector magnitude, which addresses only the orientation of coarse aggregates, is modified to account for not only the coarse aggregate orientation, but also the size, orientation, and sphericity of coarse and fine aggregates. This formulation is applied to cylindrical lab-mixed lab-compacted asphalt mixture specimens varying in asphalt binder type, air void content, and aging period. The vertical modulus and the horizontal modulus are also measured by using nondestructive tests. A relationship between the modified vector magnitude and the modulus ratio of the vertical modulus to the horizontal modulus is developed to quantify the influence of the inherent microstructure of the aggregates on the anisotropy of the mixtures. The modulus ratio is found to depend solely on the aggregate characteristics including the inclination angle, size, and sphericity, and it is independent of the asphalt binder type, air void content, and aging period. The inclination angle, itself, proves to be insufficient to quantify the inherent anisotropy of the asphalt mixtures. © 2011 American Society of Civil Engineers.
Resumo:
Bio-oil has successfully been utilized to prepare carbon-silica composites (CSCs) from mesoporous silicas, such as SBA-15, MCM-41, KIT-6 and MMSBA frameworks. These CSCs comprise a thin film of carbon dispersed over the silica matrix and exhibit porosity similar to the parent silica. The surface properties of the resulting materials can be simply tuned by the variation of preparation temperatures leading to a continuum of functionalities ranging from polar hydroxyl rich surfaces to carbonaceous aromatic surfaces, as reflected in solid state NMR, XPS and DRIFT analysis. N2 porosimetry, TEM and SEM images demonstrate that the composites still possess similar ordered mesostructures to the parent silica sample. The modification mechanism is also proposed: silica samples are impregnated with bio-oils (generated from the pyrolysis of waste paper) until the pores are filled, followed by the carbonization at a series of temperatures. Increasing temperature leads to the formation of a carbonaceous layer over the silica surface. The complex mixture of compounds within the bio-oil (including those molecules containing alcohols, aliphatics, carbonyls and aromatics) gives rise to the functionality of the CSCs.