14 resultados para Aggregation Pheromone
em Aston University Research Archive
Resumo:
The effect of sodium cholate (NaC; concentration 1-16 mM), a biological surfactant, on the aggregation behavior of 1% (w/v, 2.2 × 10(-3) M) poly(N-isopropylacrylamide) (PNIPAM) aqueous solutions was studied as a function of temperature. From turbidity, dynamic light scattering, viscosity, and fluorescence measurements, it was observed that (i) there is NaC-induced nanoscale aggregation of PNIPAM in its sol state and (ii) the lower critical solution temperature corresponding to sol-gel transition shifts to a lower temperature by about 2 °C.
Resumo:
This paper introduces a method for the analysis of regional linguistic variation. The method identifies individual and common patterns of spatial clustering in a set of linguistic variables measured over a set of locations based on a combination of three statistical techniques: spatial autocorrelation, factor analysis, and cluster analysis. To demonstrate how to apply this method, it is used to analyze regional variation in the values of 40 continuously measured, high-frequency lexical alternation variables in a 26-million-word corpus of letters to the editor representing 206 cities from across the United States.
Resumo:
We have studied the kinetics of the phase-separation process of mixtures of colloid and protein in solutions by real-time UV-vis spectroscopy. Complementary small-angle X-ray scattering (SAXS) was employed to determine the structures involved. The colloids used are gold nanoparticles functionalized with protein resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11)(OCH(2)CH(2))(6)OMe (EG6OMe). After mixing with protein solution above a critical concentration, c*, SAXS measurements show that a scattering maximum appears after a short induction time at q = 0.0322 angstrom(-1) stop, which increases its intensity with time but the peak position does not change with time, protein concentration and salt addition. The peak corresponds to the distance of the nearest neighbor in the aggregates. The upturn of scattering intensities in the low q-range developed with time indicating the formation of aggregates. No Bragg peaks corresponding to the formation of colloidal crystallites could be observed before the clusters dropped out from the solution. The growth kinetics of aggregates is followed in detail by real-time UV-vis spectroscopy, using the flocculation parameter defined as the integral of the absorption in the range of 600-800 nm wavelengths. At low salt addition (<0.5 M), a kinetic crossover from reaction-limited cluster aggregation (RLCA) to diffusion-limited cluster aggregation (DLCA) growth model is observed, and interpreted as being due to the effective repulsive interaction barrier between colloids within the depletion potential. Above 0.5 M NaCl, the surface charge of proteins is screened significantly, and the repulsive potential barrier disappeared, thus the growth kinetics can be described by a DLCA model only.
Resumo:
This paper presents a predictive aggregation rate model for spray fluidized bed melt granulation. The aggregation rate constant was derived from probability analysis of particle–droplet contact combined with time scale analysis of droplet solidification and granule–granule collision rates. The latter was obtained using the principles of kinetic theory of granular flow (KTGF). The predicted aggregation rate constants were validated by comparison with reported experimental data for a range of binder spray rate, binder droplet size and operating granulator temperature. The developed model is particularly useful for predicting particle size distributions and growth using population balance equations (PBEs).
Resumo:
Incorporating further information into the ordered weighted averaging (OWA) operator weights is investigated in this paper. We first prove that for a constant orness the minimax disparity model [13] has unique optimal solution while the modified minimax disparity model [16] has alternative optimal OWA weights. Multiple optimal solutions in modified minimax disparity model provide us opportunity to define a parametric aggregation OWA which gives flexibility to decision makers in the process of aggregation and selecting the best alternative. Finally, the usefulness of the proposed parametric aggregation method is illustrated with an application in metasearch engine. © 2011 Elsevier Inc. All rights reserved.
Resumo:
The Multiple Pheromone Ant Clustering Algorithm (MPACA) models the collective behaviour of ants to find clusters in data and to assign objects to the most appropriate class. It is an ant colony optimisation approach that uses pheromones to mark paths linking objects that are similar and potentially members of the same cluster or class. Its novelty is in the way it uses separate pheromones for each descriptive attribute of the object rather than a single pheromone representing the whole object. Ants that encounter other ants frequently enough can combine the attribute values they are detecting, which enables the MPACA to learn influential variable interactions. This paper applies the model to real-world data from two domains. One is logistics, focusing on resource allocation rather than the more traditional vehicle-routing problem. The other is mental-health risk assessment. The task for the MPACA in each domain was to predict class membership where the classes for the logistics domain were the levels of demand on haulage company resources and the mental-health classes were levels of suicide risk. Results on these noisy real-world data were promising, demonstrating the ability of the MPACA to find patterns in the data with accuracy comparable to more traditional linear regression models. © 2013 Polish Information Processing Society.
Resumo:
Ant colony optimisation algorithms model the way ants use pheromones for marking paths to important locations in their environment. Pheromone traces are picked up, followed, and reinforced by other ants but also evaporate over time. Optimal paths attract more pheromone and less useful paths fade away. The main innovation of the proposed Multiple Pheromone Ant Clustering Algorithm (MPACA) is to mark objects using many pheromones, one for each value of each attribute describing the objects in multidimensional space. Every object has one or more ants assigned to each attribute value and the ants then try to find other objects with matching values, depositing pheromone traces that link them. Encounters between ants are used to determine when ants should combine their features to look for conjunctions and whether they should belong to the same colony. This paper explains the algorithm and explores its potential effectiveness for cluster analysis. © 2014 Springer International Publishing Switzerland.
Resumo:
Aggregation and caking of particles are common severe problems in many operations and processing of granular materials, where granulated sugar is an important example. Prevention of aggregation and caking of granular materials requires a good understanding of moisture migration and caking mechanisms. In this paper, the modeling of solid bridge formation between particles is introduced, based on moisture migration of atmospheric moisture into containers packed with granular materials through vapor evaporation and condensation. A model for the caking process is then developed, based on the growth of liquid bridges (during condensation), and their hardening and subsequent creation of solid bridges (during evaporation). The predicted caking strengths agree well with some available experimental data on granulated sugar under storage conditions.
Resumo:
Ant Colony Optimisation algorithms mimic the way ants use pheromones for marking paths to important locations. Pheromone traces are followed and reinforced by other ants, but also evaporate over time. As a consequence, optimal paths attract more pheromone, whilst the less useful paths fade away. In the Multiple Pheromone Ant Clustering Algorithm (MPACA), ants detect features of objects represented as nodes within graph space. Each node has one or more ants assigned to each feature. Ants attempt to locate nodes with matching feature values, depositing pheromone traces on the way. This use of multiple pheromone values is a key innovation. Ants record other ant encounters, keeping a record of the features and colony membership of ants. The recorded values determine when ants should combine their features to look for conjunctions and whether they should merge into colonies. This ability to detect and deposit pheromone representative of feature combinations, and the resulting colony formation, renders the algorithm a powerful clustering tool. The MPACA operates as follows: (i) initially each node has ants assigned to each feature; (ii) ants roam the graph space searching for nodes with matching features; (iii) when departing matching nodes, ants deposit pheromones to inform other ants that the path goes to a node with the associated feature values; (iv) ant feature encounters are counted each time an ant arrives at a node; (v) if the feature encounters exceed a threshold value, feature combination occurs; (vi) a similar mechanism is used for colony merging. The model varies from traditional ACO in that: (i) a modified pheromone-driven movement mechanism is used; (ii) ants learn feature combinations and deposit multiple pheromone scents accordingly; (iii) ants merge into colonies, the basis of cluster formation. The MPACA is evaluated over synthetic and real-world datasets and its performance compares favourably with alternative approaches.
Resumo:
In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems.
Resumo:
Self-organization of organic molecules with carbon nanomaterials leads to formation of functionalized molecular nano-complexes with advanced features. We present a study of physical and chemical properties of carbon nanotube-surfactant-indocarbocyanine dye (astraphloxin) in water focusing on aggregation of the dye and resonant energy transfer from the dye to the nanotubes. Self-assembly of astraphloxin is evidenced in absorbance and photoluminescence depending dramatically on the concentrations of both the dye and surfactant in the mixtures. We observed an appearance of new photoluminescence peaks in visible range from the dye aggregates. The aggregates characterized with red shifted photoluminescence peaks at 595, 635 and 675 nm are formed mainly due to the presence of surfactant at the premicellar concentration. The energy transfer from the dye to the nanotubes amplifying near-infrared photoluminescence from the nanotubes is not affected by the aggregation of astraphloxin molecules providing important knowledge for further development of advanced molecular nano-complexes. The aggregation with the turned-on peaks and the energy transfer with amplified photoluminescence create powerful tools of visualization and/or detection of the nanotubes in visible and near-infrared spectral range, respectively, boosting its possible applications in sensors, energy generation/storage, and healthcare.
Resumo:
Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset.