2 resultados para Age, calculated from ice flow model

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We modify a nonlinear σ model (NLσM) for the description of a granular disordered system in the presence of both the Coulomb repulsion and the Cooper pairing. We show that under certain controlled approximations the action of this model is reduced to the Ambegaokar-Eckern-Schön (AES) action, which is further reduced to the Bose-Hubbard (or “dirty-boson”) model with renormalized coupling constants. We obtain an effective action which is more general than the AES one but still simpler than the full NLσM action. This action can be applied in the region of parameters where the reduction to the AES or the Bose-Hubbard model is not justified. This action may lead to a different picture of the superconductor-insulator transition in two-dimensional systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional finite element analysis (FEA) model with elastic-plastic anisotropy was built to investigate the effects of anisotropy on nanoindentation measurements for cortical bone. The FEA model has demonstrated a capability to capture the cortical bone material response under the indentation process. By comparison with the contact area obtained from monitoring the contact profile in FEA simulations, the Oliver-Pharr method was found to underpredict or overpredict the contact area due to the effects of anisotropy. The amount of error (less than 10% for cortical bone) depended on the indentation orientation. The indentation modulus results obtained from FEA simulations at different surface orientations showed a trend similar to experimental results and were also similar to moduli calculated from a mathematical model. The Oliver-Pharr method has been shown to be useful for providing first-order approximations in the analysis of anisotropic mechanical properties of cortical bone, although the indentation modulus is influenced by anisotropy.