3 resultados para Agat-3569

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The imidazotetrazinones are clinically active antitumour agents, temozolomide currently proving successful in the treatment of melanomas and gliomas. The exact nature of the biological processes underlying response are as yet unclear.This thesis attempts to identify the cellular targets important to the cytotoxicity of imidazotetrazinones, to elucidate the pathways by which this damage leads to cell death, and to identify mechanisms by which tumour cells may circumvent this action. The levels of the DNA repair enzymes O6-alkylguanine-DNA-alkyltransferase (O6-AGAT) and 3-methyladenine-DNA-glycosylase (3MAG) have been examined in a range of murine and human cell lines with differential sensitivity to temozolomide. All the cell lines were proficient in 3MAG despite there being 40-fold difference in sensitivity to temozolomide. This suggests that while 3-methyladenine is a major product of temozolomide alkylation of DNA it is unlikely to be a cytotoxic lesion. In contrast, there was a 20-fold variation in O6-AGAT levels and the concentration of this repair enzyme correlated with variations in cytotoxicity. Furthermore, depletion of this enzyme in a resistant, O6-AGAT proficient cell line (Raji), by pre-treatment with the free base O6-methylguanine resulted in 54% sensitisation to the effects of temozolomide. These observations have been extended to 3 glioma cell lines; results that support the view that the cytotoxicity of temozolomide is related to alkylation at the O6-position of guanine and that resistance to this drug is determined by efficient repair of this lesion. It is clear, however, the other factors may influence tumour response since temozolomide showed little differential activity towards 3 established solid murine tumours in vivo, despite different tumour O6-AGAT levels. Unlike mitozolomide, temozolomide is incapable of cross-linking DNA and a mechanism by which O6-methylguanine may exert lethality is unclear. The cytotoxicity of the methyl group may be due to its disruption of DNA-protein interactions, or alternatively cell death may not be a direct result of the alkyl group itself, but manifested by DNA single-strand breaks. Enhanced alkaline elution rates were found for the DNA of Raji cells treated with temozolomide following alkyltransferase depletion, suggesting a relationship between O6-methylguanine and the induction single-strand breaks. Such breaks can activate poly(ADP-ribose) synthetase (ADPRT) an enzyme capable of rapid and lethal depletion of cellular NAD levels. However, at concentrations of temozolomlde relevant in vivo little change in adenine nucleotides was detected in cell lines, although this enzyme would appear important in modulating DNA repair since inhibition of ADPRT potentiated temozolomide cytotoxicity in Raji cells but not O6-AGAT deficient GM892A cells. Cell lines have been reported that are O6-AGAT deficient yet resistant to methylating agents. Thus, resistance to temozolomide may arise not only by removal of the methyl group from the O6-position of guanine, but also from another mechanism involving caffeine-sensitive post-replication repair or mismatch repair activity. A modification of the standard Maxam Gilbert sequencing technique was used to determine the sequence specificity of guanine-N7 alkylation. Temozolomide preferentially alkylated runs of guanines with the intensity of reaction increasing with the number of adjacent guanines in the DNA sequence. Comparable results were obtained with a polymerase-stop assay, although neither technique elucidates the sequence specificity of O6-guanine alkylation. The importance of such specificity to cytotoxicity is uncertain, although guanine-rich sequences are common to the promoter regions of oncogenes. Expression of a plasmid reporter gene under the control of the Ha-ras proto~oncogene promoter was inhibited by alkylation with temozolomide when transfected into cancer cell lines, However, this inhibition did not appear to be related to O6~guanine alkylation and therefore would seem unimportant to the chemotherapeutic activity of temozolomide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perform characterization of the pulse shape and noise properties of quantum dot passively mode-locked lasers (PMLLs). We propose a novel method to determine the RF linewidth and timing jitter, applicable to high repetition rate PMLLs, through the dependence of modal linewidth on the mode number. Complex electric field measurements show asymmetric pulses with parabolic phase close to threshold, with the appearance of waveform instabilities at higher currents. We demonstrate that the waveform instabilities can be overcome through optical injection-locking to the continues wave (CW) master laser, leading to time-bandwidth product (TBP) improvement, spectral narrowing, and spectral tunability. We discuss the benefits of single- and dual-tone master sources and demonstrate that dual-tone optical injection can additionally improve the noise properties of the slave laser with RF linewidth reduction below instrument limits (1 kHz) and integrated timing jitter values below 300 fs. Dual-tone injection allowed slave laser repetition rate control over a 25 MHz range with reduction of all modal optical linewidths to the master source linewidth, demonstrating phase-locking of all slave modes and coherence improvement.