11 resultados para Aesthetics, Applied Theatre, Drama Education,
em Aston University Research Archive
Resumo:
Background The role of applied theatre in engaging both lay and professional publics with debate on health policy and practice is an emergent field. This paper discusses the development, production performance and discussion of ‘Inside View’.1 Objectives The objectives were to produce applied theatre from research findings of a completed study on genetic prenatal screening, exploring the dilemmas for women and health professionals of prenatal genetic screening, and to engage audiences in debate and reflection on the dilemmas of prenatal genetic screening. Methods ‘Inside View’ was developed from a multidisciplinary research study through identification of emergent themes from qualitative interviews, and development of these by the writer, theatre producer and media technologist with input from the researchers. Findings Inside View was performed in London and the Midlands to varied audiences with a panel discussion and evaluation post performance. The audiences were engaged in debate that was relevant to them professionally and personally. Knowledge translation through applied theatre is an effective tool for engaging the public but the impact subsequently is unclear. There are ethical issues of unexpected disclosure during discussion post performance and the process of transforming research findings into applied theatre requires time and trust within the multidisciplinary team as well as adequate resourcing.
Resumo:
This paper builds on previous work (Clark, 2009; Clark & Andrews 2011, 2014) to continue the debate around a seemingly universal question…“How can educational theory be applied to engineering education in such a way so as to make the subject more accessible and attractive to students? It argues that there are three key elements to student success; Relationships, Variety & Synergy (RVS). By further examining the purposefully developed bespoke learning and teaching approach constructed around these three elements (RVS) the discourse in this paper links educational theory to engineering education and in doing so further develops arguments for the introduction of a purposefully designed pedagogic approach for use in engineering education.
Resumo:
This paper builds on previous work (Clark, 2009; Clark & Andrews 2011, 2014) to continue the debate around a seemingly universal question…“How can educational theory be applied to engineering education in such a way so as to make the subject more accessible and attractive to students? It argues that there are three key elements to student success; Relationships, Variety & Synergy (RVS). By further examining the purposefully developed bespoke learning and teaching approach constructed around these three elements (RVS) the discourse in this paper links educational theory to engineering education and in doing so further develops arguments for the introduction of a purposefully designed pedagogic approach for use in engineering education.
Resumo:
Liberalisation has become an increasingly important policy trend, both in the private and public sectors of advanced industrial economies. This article eschews deterministic accounts of liberalisation by considering why government attempts to institute competition may be successful in some cases and not others. It considers the relative strength of explanations focusing on the institutional context, and on the volume and power of sectoral actors supporting liberalisation. These approaches are applied to two attempts to liberalise, one successful and one unsuccessful, within one sector in one nation – higher education in Britain. Each explanation is seen to have some explanatory power, but none is sufficient to explain why competition was generalised in the one case and not the other. The article counsels the need for scholars of liberalisation to be open to multiple explanations which may require the marshalling of multiple sources and types of evidence.
Resumo:
Starting with the question “How can University level Engineering Education be developed in such a way so as to enhance the quality of the student learning experience?”, this discussion paper proposes an approach to engineering education developed by a senior engineering educator working alongside a pedagogical researcher in an attempt to engage colleagues in contemporary debates about the issues currently faced across the Sector. Such issues include difficulties with recruiting students onto programmes as well as high levels of student attrition and failure. Underpinned by three distinctive concepts: Synergy, Variety & Relationships (S+V+R), the approach brings together pedagogic and engineering epistemologies in an empirically grounded framework in such a way so as to provide an accessible and relevant learning approach that, if followed, engenders student success [S2]. Specifically developed with the intention of increasing retention and positively impacting student success [S2], the S+V+R=S2 approach provides a scholarly and Synergetic (S) approach to engineering education that is both innovative and exciting. Building on the argument that Variety (V) in education is pivotal to promoting originality and creativity in learning and teaching, this paper shows how, by purposefully developing a range of learning and teaching approaches, student engagement and thus success can be increased. It also considers the importance of Relationships (R) in higher education, arguing that belonging and relationships are crucial factors impacting student experiences. When taken together (Synergy, Variety and Relationships) and applied within an Engineering Education context, students are provided with a unique learning environment – one that both promotes individual success and improves organisational effectiveness. The uniqueness of the approach is in the synthesis of these three concepts within an Engineering Education epistemology.
Resumo:
In this article, we examine the issue of high dropout rates in India which has adverse implications for human capital formation and hence for the country's long-term growth potential. Using the 2004–2005 National Sample Survey (NSS) employment–unemployment data, we estimate transition probabilities of moving from a number of different educational levels to higher educational levels using a sequential logit model. Our results suggest that the overall probability of reaching tertiary education is very low. Further, even by the woeful overall standards, women are significantly worse off, particularly in rural areas.
Resumo:
This article reports on an investigationwith first year undergraduate ProductDesign and Management students within a School of Engineering and Applied Science. The students at the time of this investigation had studied fundamental engineering science and mathematics for one semester. The students were given an open ended, ill-formed problem which involved designing a simple bridge to cross a river.They were given a talk on problemsolving and given a rubric to follow, if they chose to do so.They were not given any formulae or procedures needed in order to resolve the problem. In theory, they possessed the knowledge to ask the right questions in order tomake assumptions but, in practice, it turned out they were unable to link their a priori knowledge to resolve this problem. They were able to solve simple beam problems when given closed questions. The results show they were unable to visualize a simple bridge as an augmented beam problem and ask pertinent questions and hence formulate appropriate assumptions in order to offer resolutions.
Resumo:
Grounded in the findings of a three year exploratory student whereby teachers' and policy makers' perceptions of elementary level engineering education were analysed, this paper focuses upon three strands of engineering education activity: Pedagogy: Practice, and: Policy. Taking into account the challenges associated with introducing engineering education at an elementary level across the UK, the paper critiques the role played by the 'competition model' in promoting engineering to children and 4 to 11 years. In considering the 'added value' that appropriately developed engineering education activities can offer in the classroom the discussion argues that elementary level engineering has the potential to reach across the curriculum, offering context and depth in many different areas. The paper concludes by arguing that by introducing the discipline to children at a foundational level, switching on their 'Engineering Imaginations' and getting them to experience the value and excitement of engineering, maths and applied science a new "Educational Frontier" will be forged. © American Society for Engineering Education, 2014.
Resumo:
This colloquium was organised by Ryuko Kubota (University of British Columbia, Canada) and Sue Garton (Aston University, UK) as part of the collaboration between the American Association for Applied Linguistics (AAAL) and TESOL International Association.
Resumo:
This paper focuses upon the argument that the role played by the engineering profession within today's society has changed markedly over the past several years from providing the foundations for contemporary life to leading societal change and becoming one of the key driver's of future social development. Coining the term 'Engineering-Sociology' this paper contributes to engineering education and engineering education research by proposing a new paradigm upon which future engineering education programmes and engineering education research might build. Developed out of an approach to learning and teaching practice, Engineering-Sociology encapsulates both traditional and applied approaches to engineering education and engineering education research. It suggests that in order to meet future challenges there is a need to bring together what are generally perceived to be two diametrically opposed paradigms, namely engineering and sociology. Building on contemporary theoretical and pedagogical arguments in engineering education research, the paper concludes that by encouraging engineering educators to 'think differently', Engineering-Sociology can provide an approach to learning and teaching that both enhances the student experience and meets the changing needs of society.
Resumo:
This paper initially reports concerns about the falling interest in engineering and mathematical disciplines and looks at some of the reasons for this. It then discusses the aims of the Engineering Diploma - a qualification for 14-19 year olds in the UK - and the pedagogical research that that has informed the design and development. The paper highlights the key learning theories that support the delivery of this qualification and provides an example of how this pedagogy has been applied effectively through the curriculum partnership that has been developed between a consortium of schools in the Birmingham local authority, Aston University and employers. It establishes the importance of aligning the curriculum and articulating clear engineering progression routes from the age of fourteen to enable young people to be inspired and motivated towards careers in engineering. The paper presents the view of parents, teachers and pupils involved with the Diploma, during the first year, and the way in which the partnership is informing future developments in the delivery of engineering curriculum within the region. The success of this regional partnership model has resulted in the Department of Children, Schools and Families agreeing to fund the development of the Aston University Engineering Academy Birmingham. This is a school for 14-19 year olds that will open in 2012 on the Aston Science Park adjacent to the University. The final part of the paper looks at the benefits to the young local engineers of this initiative. © 2009 Authors.