3 resultados para Aeroelascity, Optimization, Uncertainty

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a laser tracker position optimization code based on the tracker uncertainty model developed by the National Physical Laboratory (NPL). The code is able to find the optimal tracker positions for generic measurements involving one or a network of many trackers, and an arbitrary set of targets. The optimization is performed using pattern search or optionally, genetic algorithm (GA) or particle swarm optimization (PSO). Different objective function weightings for the uncertainties of individual points, distance uncertainties between point pairs, and the angular uncertainties between three points can be defined. Constraints for tracker position limits and minimum measurement distances have also been implemented. Furthermore, position optimization taking into account of lines-of-sight (LOS) within complex CAD geometry have also been demonstrated. The code is simple to use and can be a valuable measurement planning tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a laser tracker position optimization code based on the tracker uncertainty model developed by the National Physical Laboratory (NPL). The code is able to find the optimal tracker positions for generic measurements involving one or a network of many trackers, and an arbitrary set of targets. The optimization is performed using pattern search or optionally, genetic algorithm (GA) or particle swarm optimization (PSO). Different objective function weightings for the uncertainties of individual points, distance uncertainties between point pairs, and the angular uncertainties between three points can be defined. Constraints for tracker position limits and minimum measurement distances have also been implemented. Furthermore, position optimization taking into account of lines-of-sight (LOS) within complex CAD geometry have also been demonstrated. The code is simple to use and can be a valuable measurement planning tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser trackers have been widely used in many industries to meet increasingly high accuracy requirements. In laser tracker measurement, it is complex and difficult to perform an accurate error analysis and uncertainty evaluation. This paper firstly reviews the working principle of single beam laser trackers and state-of- The- Art of key technologies from both industrial and academic efforts, followed by a comprehensive analysis of uncertainty sources. A generic laser tracker modelling method is formulated and the framework of the virtual tracker is proposed. The VLS can be used for measurement planning, measurement accuracy optimization and uncertainty evaluation. The completed virtual laser tracking system should take all the uncertainty sources affecting coordinate measurement into consideration and establish an uncertainty model which will behave in an identical way to the real system. © Springer-Verlag Berlin Heidelberg 2010.