35 resultados para Adjuvanted Influenza Vaccines

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation: Influenza A viral heterogeneity remains a significant threat due to unpredictable antigenic drift in seasonal influenza and antigenic shifts caused by the emergence of novel subtypes. Annual review of multivalent influenza vaccines targets strains of influenza A and B likely to be predominant in future influenza seasons. This does not induce broad, cross protective immunity against emergent subtypes. Better strategies are needed to prevent future pandemics. Cross-protection can be achieved by activating CD8+ and CD4+ T cells against highly-conserved regions of the influenza genome. We combine available experimental data with informatics-based immunological predictions to help design vaccines potentially able to induce cross-protective T-cells against multiple influenza subtypes. Results: To exemplify our approach we designed two epitope ensemble vaccines comprising highly-conserved and experimentally-verified immunogenic influenza A epitopes as putative non-seasonal influenza vaccines; one specifically targets the US population and the other is a universal vaccine. The USA-specific vaccine comprised 6 CD8+ T cell epitopes (GILGFVFTL, FMYSDFHFI, GMDPRMCSL, SVKEKDMTK, FYIQMCTEL, DTVNRTHQY) and 3 CD4+ epitopes (KGILGFVFTLTVPSE, EYIMKGVYINTALLN, ILGFVFTLTVPSERG). The universal vaccine comprised 8 CD8+ epitopes: (FMYSDFHFI, GILGFVFTL, ILRGSVAHK, FYIQMCTEL, ILKGKFQTA, YYLEKANKI, VSDGGPNLY, YSHGTGTGY) and the same 3 CD4+ epitopes. Our USA-specific vaccine has a population protection coverage (portion of the population potentially responsive to one or more component epitopes of the vaccine, PPC) of over 96% and 95% coverage of observed influenza subtypes. The universal vaccine has a PPC value of over 97% and 88% coverage of observed subtypes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports the evaluation of the effectiveness of incentives (viz. points and prizes) and of peer-group organisers ('older people's champions') in the outcomes of a health-improvement programme for people aged 50 + years in a multi-ethnic district of the West Midlands, England. Health promotion activities Were provided, and adherence, outcome variables and barriers to adherence were assessed over six months, using a `passport' format. Those aged in the fifties and of Asian origin Were under represented, but people of Afro-Caribbean origin were well represented and proportionately most likely to stay in the project. Those of greater age and With more illness were most likely to drop out. There were significant improvements in exercise, diet and the uptake of influenza vaccines and eyesight tests, but slighter improvements in wellbeing. Positive outcomes related to the incentives and to liking the format. The number of reported barriers was associated with lower involvement and lack of change, as was finding activities too difficult, the level of understanding, and transport and mobility problems, but when these were controlled, age did not predict involvement. Enjoying the scheme was related to positive changes, and this was associated with support from the older people's champions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared to naked DNA immunisation, entrapment of plasmid-based DNA vaccines into liposomes by the dehydration-rehydration method has shown to enhance both humoural and cell-mediated immune responses to encoded antigens administered by a variety of routes. In this paper we have compared the potency of lipid-based and non-ionic surfactant based vesicle carrier systems for DNA vaccines after subcutaneous immunisation. Plasmid pI.18Sfi/NP containing the nucleoprotein (NP) gene of A/Sichuan/2/87 (H3N2) influenza virus in the pI.18 expression vector was incorporated by the dehydration-rehydration method into various vesicle formulations. The DRV method, entailing mixing of small unilamellar vesicles (SUV) with DNA, followed by dehydration and rehydration, yielded high DNA vaccine incorporation values (85-97% of the DNA used) in all formulations. Studies on vesicle size revealed lipid-based systems formed cationic submicron size vesicles whilst constructs containing a non-ionic surfactant had significantly large z-average diameters (>1500 nm). Subcutaneous vesicle-mediated DNA immunisation employing two DRV(DNA) formulations as well as naked DNA revealed that humoural responses (immunoglobulin total IgG, and subclasses IgG 1 and 1gG 2a) engendered by the plasmid encoded nucleoprotein were substantially higher after dosing twice, 28 days apart with 10 μg DRV-entrapped DNA compared to naked DNA. Comparison between the lipid and non-ionic based vesicle formulations revealed no significant difference in stimulated antibody production. These results suggest that, not only can DNA be effectively entrapped within a range of lipid and non-ionic based vesicle formulations using the DRV method but that such DRV vesicles containing DNA may be a useful system for subcutaneous delivery of DNA vaccines. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formulation of plasmid DNA (pDNA) in cationic liposomes is a promising strategy to improve the potency of DNA vaccines. In this respect, physicochemical parameters such as liposome size may be important for their efficacy. The aim of the current study was to investigate the effect of vesicle size on the in vivo performance of liposomal pDNA vaccines after subcutaneous vaccination in mice. The tissue distribution of cationic liposomes of two sizes, 500 nm (PDI 0.6) and 140 nm (PDI 0.15), composed of egg PC, DOPE and DOTAP, with encapsulated OVA-encoding pDNA, was studied by using dual radiolabeled pDNA-liposomes. Their potency to elicit cellular and humoral immune responses was investigated upon application in a homologous and heterologous vaccination schedule with 3 week intervals. It was shown that encapsulation of pDNA into cationic lipsomes resulted in deposition at the site of injection, and strongest retention was observed at large vesicle size. The vaccination studies demonstrated a more robust induction of OVA-specific, functional CD8+ T-cells and higher antibody levels upon vaccination with small monodisperse pDNA-liposomes, as compared to large heterodisperse liposomes or naked pDNA. The introduction of a PEG-coating on the small cationic liposomes resulted in enhanced lymphatic drainage, but immune responses were not improved when compared to non-PEGylated liposomes. In conclusion, it was shown that the physicochemical properties of the liposomes are of crucial importance for their performance as pDNA vaccine carrier, and cationic charge and small size are favorable properties for subcutaneous DNA vaccination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccination remains a key tool in the protection and eradication of diseases. However, the development of new safe and effective vaccines is not easy. Various live organism based vaccines currently licensed, exhibit high efficacy; however, this benefit is associated with risk, due to the adverse reactions found with these vaccines. Therefore, in the development of vaccines, the associated risk-benefit issues need to be addressed. Sub-unit proteins offer a much safer alternative; however, their efficacy is low. The use of adjuvanted systems have proven to enhance the immunogenicity of these sub-unit vaccines through protection (i.e. preventing degradation of the antigen in vivo) and enhanced targeting of these antigens to professional antigen-presenting cells. Understanding of the immunological implications of the related disease will enable validation for the design and development of potential adjuvant systems. Novel adjuvant research involves the combination of both pharmaceutical analysis accompanied by detailed immunological investigations, whereby, pharmaceutically designed adjuvants are driven by an increased understanding of mechanisms of adjuvant activity, largely facilitated by description of highly specific innate immune recognition of components usually associated with the presence of invading bacteria or virus. The majority of pharmaceutical based adjuvants currently being investigated are particulate based delivery systems, such as liposome formulations. As an adjuvant, liposomes have been shown to enhance immunity against the associated disease particularly when a cationic lipid is used within the formulation. In addition, the inclusion of components such as immunomodulators, further enhance immunity. Within this review, the use and application of effective adjuvants is investigated, with particular emphasis on liposomal-based systems. The mechanisms of adjuvant activity, analysis of complex immunological characteristics and formulation and delivery of these vaccines are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared to naked DNA immunisation, entrapment of plasmid-based DNA vaccines into liposomes by the dehydration-rehydration method has shown to enhance both humoural and cell-mediated immune responses to encoded antigens administered by a variety of routes. In this paper, we have investigated the application of liposome-entrapped DNA and their cationic lipid composition on such potency after subcutaneous immunisation. Plasmid pI.18Sfi/NP containing the nucleoprotein (NP) gene of A/Sichuan/2/87 (H3N2) influenza virus in the pI.18 expression vector was incorporated by the dehydration-rehydration method into liposomes composed of 16 μmol egg phosphatidylcholine (PC), 8 μmoles dioleoyl phosphatidylethanolamine (DOPE) or cholesterol (Chol) and either the cationic lipid 1,2-diodeoyl-3-(trimethylammonium) propane (DOTAP) or cholesteryl 3-N-(dimethyl amino ethyl) carbamate (DC-Chol). This method, entailing mixing of small unilamellar vesicles (SUV) with DNA, followed by dehydration and rehydration, yielded incorporation values of 90-94% of the DNA used. Mixing or rehydration of preformed cationic liposomes with 100 μg plasmid DNA also led to similarly high complexation values (92-94%). In an attempt to establish differences in the nature of DNA association with these various liposome preparations their physico-chemical characteristics were investigated. Studies on vesicle size, zeta potential and gel electrophoresis in the presence of the anion sodium dodecyl sulphate (SDS) indicate that, under the conditions employed, formulation of liposomal DNA by the dehydration-rehydration generated submicron size liposomes incorporating most of the DNA in a manner that prevents DNA displacement through anion competition. The bilayer composition of these dehydration-rehydration vesicles (DRV(DNA)) can also further influence these physicochemical characteristics with the presence of DOPE within the liposome bilayer resulting in a reduced vesicle zeta potential. Subcutaneous liposome-mediated DNA immunisation employing two DRV(DNA) formulations as well as naked DNA revealed that humoural responses (immunoglobulin total IgG, and subclasses IgG1 and 1gG2a) engendered by the plasmid encoded NP were substantially higher after dosing twice, 28 days apart with 10 μg liposome-entrapped DNA compared to naked DNA. At all time points measured, mice immunised with naked DNA showed no greater immune response compared to the control, non-immunised group. In contrast, as early as day 49, responses were significantly higher in mice injected with DNA entrapped in DRV liposomes containing DOTAP compared to the control group and mice immunised with naked DNA. By day 56, all total IgG responses from mice immunised with both DRV formulations were significantly higher. Comparison between the DRV formulations revealed no significant difference in immune responses elicited except at day 114, where the humoural responses of the group injected with liposomal formulation containing DC-Chol dropped to significantly lower levels that those measured in mice which received the DOTAP formulation. Similar results were found when the IgG1 and IgG2a subclass responses were determined. These results suggest that, not only can DNA be effectively entrapped within liposomes using the DRV method but that such DRV liposomes containing DNA may be a useful system for subcutaneous delivery of DNA vaccines. © 2003 Taylor & Francis Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes--including size, antigen association and addition of TLR agonists--to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFN? responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particulate delivery systems such as liposomes and polymeric nano- and microparticles are attracting great interest for developing new vaccines. Materials and formulation properties essential for this purpose have been extensively studied, but relatively little is known about the influence of the administration route of such delivery systems on the type and strength of immune response elicited. Thus, the present study aimed at elucidating the influence on the immune response when of immunising mice by different routes, such as the subcutaneous, intradermal, intramuscular, and intralymphatic routes with ovalbumin-loaded liposomes, N-trimethyl chitosan (TMC) nanoparticles, and poly(lactide-co-glycolide) (PLGA) microparticles, all with and without specifically selected immune-response modifiers. The results showed that the route of administration caused only minor differences in inducing an antibody response of the IgG1 subclass, and any such differences were abolished upon booster immunisation with the various adjuvanted and non-adjuvanted delivery systems. In contrast, the administration route strongly affected both the kinetics and magnitude of the IgG2a response. A single intralymphatic administration of all evaluated delivery systems induced a robust IgG2a response, whereas subcutaneous administration failed to elicit a substantial IgG2a response even after boosting, except with the adjuvanted nanoparticles. The intradermal and intramuscular routes generated intermediate IgG2a titers. The benefit of the intralymphatic administration route for eliciting a Th1-type response was confirmed in terms of IFN-gamma production of isolated and re-stimulated splenocytes from animals previously immunised with adjuvanted and non-adjuvanted liposomes as well as with adjuvanted microparticles. Altogether the results show that the IgG2a associated with Th1-type immune responses are sensitive to the route of administration, whereas IgG1 response associated with Th2-type immune responses were relatively insensitive to the administration route of the particulate delivery systems. The route of administration should therefore be considered when planning and interpreting pre-clinical research or development on vaccine delivery systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The requirement of adjuvants in subunit protein vaccination is well known yet their mechanisms of action remain elusive. Of the numerous mechanisms suggested, cationic liposomes appear to fulfil at least three: the antigen depot effect, the delivery of antigen to antigen presenting cells (APCs) and finally the danger signal. We have investigated the role of antigen depot effect with the use of dual radiolabelling whereby adjuvant and antigen presence in tissues can be quantified. In our studies a range of cationic liposomes and different antigens were studied to determine the importance of physical properties such as liposome surface charge, antigen association and inherent lipid immunogenicity. More recently we have investigated the role of liposome size with the cationic liposome formulation DDA:TDB, composed of the cationic lipid dimethyldioctadecylammonium (DDA) and the synthetic mycobacterial glycolipid trehalose 6,6’-dibehenate (TDB). Vesicle size is a frequently investigated parameter which is known to result in different routes of endocytosis. It has been postulated that targeting different routes leads to different intracellular signaling pathway activation and it is certainly true that numerous studies have shown vesicle size to have an effect on the resulting immune responses (e.g. Th1 vs. Th2). Aim: To determine the effect of cationic liposome size on the biodistribution of adjuvant and antigen, the ensuing humoral and cell-mediated immune responses and the uptake and activation of antigen by APCs including macrophages and dendritic cells. Methods: DDA:TDB liposomes were made to three different sizes (~ 0.2, 0.5 and 2 µm) followed by the addition of tuberculosis antigen Ag85B-ESAT-6 therefore resulting in surface adsorption. Liposome formulations were injected into Balb/c or C57Bl/6 mice via the intramuscular route. The biodistribution of the liposome formulations was followed using dual radiolabelling. Tissues including muscle from the site of injection and local draining lymph nodes were removed and liposome and antigen presence quantified. Mice were also immunized with the different vaccine formulations and cytokine production (from Ag85B-ESAT-6 restimulated splenocytes) and antibody presence in blood assayed. Furthermore, splenocyte proliferation after restimulating with Ag85B-ESAT-6 was measured. Finally, APCs were compared for their ability to endocytose vaccine formulations and the effect this had on the maturation status of the cell populations was compared. Flow cytometry and fluorescence labelling was used to investigate maturation marker up-regulation and efficacy of phagocytosis. Results: Our results show that for an efficient Ag85B-ESAT-6 antigen depot at the injection site, liposomes composed of DDA and TDB are required. There is no significant change in the presence of liposome or antigen at 6hrs or 24hrs p.i, nor does liposome size have an effect. Approximately 0.05% of the injected liposome dose is detected in the local draining lymph node 24hrs p.i however protein presence is low (<0.005% dose). Preliminary in vitro data shows liposome and antigen endocytosis by macrophages; further studies on this will be presented in addition to the results of the immunisation study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adjuvanticity of liposomes can be directed through formulation to develop a safe yet potent vaccine candidate. With the addition of the cationic lipid dimethyldioctadecylammonium bromide (DDA) to stable neutral distearoylphosphatidylcholine (DSPC):cholesterol (Chol) liposomes, vesicle size reduces while protein entrapment increases. The addition of the immunomodulator, trehalose 6,6-dibehenate (TDB) to either the neutral or cationic liposomes did not affect the physiochemical characteristics of these liposome vesicles. However, the protective immune response, as indicated by the amount of IFN-? production, increases considerably when TDB is present. High levels of IFN-? were observed for cationic liposomes; however, there was a marked reduction in IFN-? release over time. Conversely, for neutral liposomes containing TDB, although the initial amount of IFN-? was slightly lower than the cationic equivalent, the overall protective immune responses of these neutral liposomes were effectively maintained over time, generating good levels of protection. To that end, although the addition of DSPC and Chol reduced the protective immunity of DDA:TDB liposomes, relatively high protection was observed for the neutral counterpart, DSPC:Chol:TDB, which may offer an effective neutral alternative to the DDA:TDB cationic system, especially for the delivery of either zwitterionic (neutral) or cationic molecules or antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of DNA vaccines has heralded a new technology allowing the design and elicitation of immune responses more adequate for a wider range of pathogens. The formulation of these vaccines into the desired dosage forms extends their capability in terms of stability, routes of administration and efficacy. This thesis describes an investigation into the fabrication of plasmid DNA, the active principle of DNA vaccines, into microspheres, based on the tenet of an increased cellular uptake of microparticulate matter by phagocytic cells. The formulation of plasmid DNA into microspheres using two methods, is presented. Formulation of microspheric plasmid DNA using the double emulsion solvent evaporation method and a spray-drying method was explored. The former approach involves formation of a double emulsion, by homogenisation. This method produced microspheres of uniform size and smooth morphology, but had a detrimental effect on the formulated DNA. The spray-drying method resulted in microspheres with an improved preservation of DNA stability. The use of polyethylenimine (PEI) and stearylamine (SA) as agents in the microspheric formulation of plasmid DNA is a novel approach to DNA vaccine design. Using these molecules as model positively-charged agents, their influence on the characteristics of the microspheric formulations was investigated. PEI improved the entrapment efficiency of the plasmid DNA in microspheres, and has minimal effect on either the surface charge, morphology or size distribution of the formulations. Stearylamine effected an increase in the entrapment efficiency and stability of the plasmid DNA and its effect on the micropshere morphology was dependent on the method of preparation. The differences in the effects of the two molecules on microsphere formulations may be attributable to their dissimilar physico-chemical properties. PEI is water-soluble and highly-branched, while SA is hydrophobic and amphipathic. The positive charge of both molecules is imparted by amine functional groups. Preliminary data on the in vivo application of formulated DNA vaccine, using hepatitis B plasmid, showed superior humoral responses to the formulated antigen, compared with free (unformulated) antigen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research was to formulate a novel biodegradable, biocompatible cationic microparticle vector for the delivery of DNA vaccines. The work builds upon previous research by Singh et al which described the adsorption of DNA to the surface of poly (D,L-lactide-co-glycolide) (PLG) microparticles stabilised with the surfactant cetyltrimethyl ammonium bromide (CT AB). This work demonstrated the induction of antibody and cellular immune responses to HIV proteins encoded on plasmid DNA adsorbed to the particle surface in mice, guinea pigs and non-human primates (Singh et aI, 2000; O'Hagan et aI, 2001). However, the use of surfactants in microparticle formulations for human vaccination is undesirable due to long term safety issues. Therefore, the present research aim was to develop an adsorbed DNA vaccine with enhanced potency and increased safety compared to CTAB stabilised PLG microparticles (PLG/CTAB) by replacement of the surfactant CTAB with an alternative cationic agent. The cationic polymers chitosan and poly (N- vinylpyrrolidone/2-dimethylaminoethyl methacrylate), dimethyl sulfate quaternary (PVP-PDAEMA) were investigated as alternative stabilisers to CTAB. From a variety of initial formulations, the most promising vector(s) for DNA vaccination were selected based on physicochemical data (chapter 3) and in vitro DNA loading and release characteristics (chapter 4). The chosen formulation(s) were analysed in greater depth (chapters 3 and 4), and gene expression was assessed by in vitro cell transfection studies using 293T kidney epithelial and C2C12 myoblast non-phagocytic cell lines (chapter 5). The cytotoxicity of the microparticles and their constituents were also evaluated in vitro (chapter 5). Stability and suitability of the formulation(s) for commercial production were assessed by cryopreparation and lyophilisation studies (chapters 3 and 4). Gene expression levels in cells of the immune response were evaluated by microparticle transfection of the dendritic cell (DC) line 2.4 and primary bone marrow derived DCs (chapter 6). In vivo, mice were injected i.m. with the formulations deemed most promising on the basis of in vitro studies and humoral and cellular immune responses were evaluated (chapter 6).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we have established the efficient mucosal delivery of vaccines using absorption enhancers and chitosan. In addition, the use of chitosan was shown to enhance the action of other known adjuvants, such as CTB or Quil-A. Collectively, the results presented herein indicate that chitosan has excellent potential as a mucosal adjuvant. We have evaluated a number of absorption enhancers for their adjuvant activity in vivo. Polyornithine was shown to engender high scrum immune reasons to nasally delivered antigens, with higher molecular weight polyornithine facilitating the best results. We have demonstrated for the first time that vitamin E TPGS can act as mucosal adjuvant. Deoxycholic acid, cyclodextrins and acylcarnitines were also identified as effective mucosal adjuvants and showed enhanced immune responses to nasally delivered TT, DT and Yersinia pestis V and F1 antigens. Previously, none of these agents, common in their action as absorption enhancing agents, have been shown to have immunopotentiating activity for mucosal immunisation. We have successfully developed novel surface modified microspheres using chitosan as an emulsion stabiliser during the preparation of PLA microspheres. It was found that immune responses could be substantially increased, effectively exploiting the immunopenetrating characteristics of both chitosan and PLA microspheres in the same delivery vehicle. In the same study, comparison of intranasal and intramuscular routes of administration showed that with these formulations, the nasal route could be as effective as intramuscular delivery, highlighting the potential of mucosal administration for these particulate delivery systems. Chitosan was co-administered with polymer microspheres. It was demonstrated that this strategy facilitates markedly enhanced immune responses in both magnitude and duration following intramuscular administration. We conclude that this combination shows potential for single dose administration of vaccines. In another study, we have shown that the addition of chitosan to alum adsorbed TT was able to enhance immune responses. PLA micro/nanospheres were prepared and characterised with discreet particle size ranges. A smaller particle size was shown to facilitate higher scrum IgG responses following nasal administration. A lower antigen loading was additionally identified as being preferential for the induction of immune responses in combination with the smaller particle size. This may be due to the fact that the number of particles will be increased when antigen loading is low, which may in turn facilitate a more widespread uptake of particles. PLA lamellar particles were prepared and characterised. Adsorbed TT was evaluated for the potential to engender immune responses in vivo. These formulations were shown to generate effective immune responses following intramuscular administration. Positively charged polyethylcyanoacrylate and PLA nanoparticies were designed and characterised and their potential as delivery vehicles for DNA vaccines was investigated. Successful preparation of particles with narrow size distribution and positive surface charge (imparted by the inclusion of chitosan) was achieved. In the evaluation of antibody responses to DNA encoded antigen in the presence of alum administered intranasally, discrimination between the groups was only seen following intramuscular boosting with the corresponding protein. Our study showed that DNA vaccines in the presence of either alum or Quil-A may advantageously influence priming of the immune system by a mucosal route. The potential for the combination of adjuvants, Quil-A and chitosan, to enhance antibody responses to plasmid encoded antigen co-administered with the corresponding protein antigen was shown and this is worthy of further investigation. The findings here have identified novel adjuvants and approaches to vaccine delivery. In particular, chitosan or vitamin E TPGS are shown here to have considerable promise as non-toxic, safe mucosal adjuvants. In addition, biodegradable mucoadhesive delivery systems, surface modified with chitosan in a single step process, may have application for other uses such as drug and gene delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent technological advances have resulted in the production of safe subunit and synthetic small peptide vaccines. Unfortunately, these vaccines are weakly or non-immunogenic in the absence of an immunological adjuvant (agents that can induce strong immunity to antigens). In addition, in order to prevent and/or control infection at the mucosal surface, stimulation of the mucosal immune system is essential. This may be achieved via the common mucosal immune system by exposure to antigen at a mucosal surface remote from the area of infection. Initial studies investigated the potential of multiple emulsions in effecting oral absorption and the subsequent immune responses to a lipopolysaccharide vaccine (LPS) after immunisation. Nasal delivery of LPS was carried out in parallel work using either aqueous solution or gel formulations. Tetanus toxoid vaccine in simple solution was delivered to guinea pigs as free antigen or entrapped in DSPC liposomes. In addition, adsorbed tetanus toxoid vaccine was delivered nasally free or in an aerosil gel formulation. This work was extended to investigate guinea pigs immunised by various mucosal routes with a herpes simplex virus subunit vaccine prepared from virus infected cells and delivered in gels, multiple emulsions and liposomes. Comparable serum antibody responses resulted but failed to produce enhanced protection against vaginal challenge when compared to subcutaneous immunisation with alhydrogel adjuvanted vaccine. Thus, immunisation of the mucosal surface by these methods may have been inadequate. These studies were extended in an attempt to protect against HSV genital challenge by construction of an attenuated Salmonella typhimurium HWSH aroA mutant expressing a cloned glycoprotein D-l gene fused to the Es-cherichia coli lac z promoter. Preliminary work on the colonisation of guinea pigs with S. typhimurium HWSH aroA mutants were carried out, with the aim of using the guinea pig HSV vaginal model to investigate protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Therapeutic proteins are vital to the future of human health provision and the survival and profitability of the global pharmaceutical industry. Returns from protein therapeutics are experiencing unprecedented growth: both their number and their economic dividend have increased by an order of magnitude in the last 10 years. The potential immunogenicity of protein therapeutics raises many clinical and safety concerns. Many poorly understood factors relating to both product and host affect immune responses. Available laboratory measurement of immunogenicity is of little utility for predicting the clinical properties of biotherapeutics. Coupled with assay variability and standardization issues, this precludes adequate prediction of the biological or clinical responses of therapeutic proteins, arguing for the utilization of informatic strategies in the analysis and prediction of protein immunogenicity. Currently, many unresolved issues must be addressed and thus circumvented before effective prediction can become routine.