15 resultados para Adaptive analysis
em Aston University Research Archive
Resumo:
A re-examination of fundamental concepts and a formal structuring of the waveform analysis problem is presented in Part I. eg. the nature of frequency is examined and a novel alternative to the classical methods of detection proposed and implemented which has the advantage of speed and independence from amplitude. Waveform analysis provides the link between Parts I and II. Part II is devoted to Human Factors and the Adaptive Task Technique. The Historical, Technical and Intellectual development of the technique is traced in a review which examines the evidence of its advantages relative to non-adaptive fixed task methods of training, skill assessment and man-machine optimisation. A second review examines research evidence on the effect of vibration on manual control ability. Findings are presented in terms of percentage increment or decrement in performance relative to performance without vibration in the range 0-0.6Rms'g'. Primary task performance was found to vary by as much as 90% between tasks at the same Rms'g'. Differences in task difficulty accounted for this difference. Within tasks vibration-added-difficulty accounted for the effects of vibration intensity. Secondary tasks were found to be largely insensitive to vibration except secondaries which involved fine manual adjustment of minor controls. Three experiments are reported next in which an adaptive technique was used to measure the % task difficulty added by vertical random and sinusoidal vibration to a 'Critical Compensatory Tracking task. At vibration intensities between 0 - 0.09 Rms 'g' it was found that random vibration added (24.5 x Rms'g')/7.4 x 100% to the difficulty of the control task. An equivalence relationship between Random and Sinusoidal vibration effects was established based upon added task difficulty. Waveform Analyses which were applied to the experimental data served to validate Phase Plane analysis and uncovered the development of a control and possibly a vibration isolation strategy. The submission ends with an appraisal of subjects mentioned in the thesis title.
Resumo:
Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.
Resumo:
An adaptive back-propagation algorithm is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, both numerical studies and a rigorous analysis show that the adaptive back-propagation method results in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.
Resumo:
The software underpinning today’s IT systems needs to adapt dynamically and predictably to rapid changes in system workload, environment and objectives. We describe a software framework that achieves such adaptiveness for IT systems whose components can be modelled as Markov chains. The framework comprises (i) an autonomic architecture that uses Markov-chain quantitative analysis to dynamically adjust the parameters of an IT system in line with its state, environment and objectives; and (ii) a method for developing instances of this architecture for real-world systems. Two case studies are presented that use the framework successfully for the dynamic power management of disk drives, and for the adaptive management of cluster availability within data centres, respectively.
Resumo:
This thesis first considers the calibration and signal processing requirements of a neuromagnetometer for the measurement of human visual function. Gradiometer calibration using straight wire grids is examined and optimal grid configurations determined, given realistic constructional tolerances. Simulations show that for gradiometer balance of 1:104 and wire spacing error of 0.25mm the achievable calibration accuracy of gain is 0.3%, of position is 0.3mm and of orientation is 0.6°. Practical results with a 19-channel 2nd-order gradiometer based system exceed this performance. The real-time application of adaptive reference noise cancellation filtering to running-average evoked response data is examined. In the steady state, the filter can be assumed to be driven by a non-stationary step input arising at epoch boundaries. Based on empirical measures of this driving step an optimal progression for the filter time constant is proposed which improves upon fixed time constant filter performance. The incorporation of the time-derivatives of the reference channels was found to improve the performance of the adaptive filtering algorithm by 15-20% for unaveraged data, falling to 5% with averaging. The thesis concludes with a neuromagnetic investigation of evoked cortical responses to chromatic and luminance grating stimuli. The global magnetic field power of evoked responses to the onset of sinusoidal gratings was shown to have distinct chromatic and luminance sensitive components. Analysis of the results, using a single equivalent current dipole model, shows that these components arise from activity within two distinct cortical locations. Co-registration of the resulting current source localisations with MRI shows a chromatically responsive area lying along the midline within the calcarine fissure, possibly extending onto the lingual and cuneal gyri. It is postulated that this area is the human homologue of the primate cortical area V4.
Resumo:
Designers of self-adaptive systems often formulate adaptive design decisions, making unrealistic or myopic assumptions about the system's requirements and environment. The decisions taken during this formulation are crucial for satisfying requirements. In environments which are characterized by uncertainty and dynamism, deviation from these assumptions is the norm and may trigger 'surprises'. Our method allows designers to make explicit links between the possible emergence of surprises, risks and design trade-offs. The method can be used to explore the design decisions for self-adaptive systems and choose among decisions that better fulfil (or rather partially fulfil) non-functional requirements and address their trade-offs. The analysis can also provide designers with valuable input for refining the adaptation decisions to balance, for example, resilience (i.e. Satisfiability of non-functional requirements and their trade-offs) and stability (i.e. Minimizing the frequency of adaptation). The objective is to provide designers of self adaptive systems with a basis for multi-dimensional what-if analysis to revise and improve the understanding of the environment and its effect on non-functional requirements and thereafter decision-making. We have applied the method to a wireless sensor network for flood prediction. The application shows that the method gives rise to questions that were not explicitly asked before at design-time and assists designers in the process of risk-aware, what-if and trade-off analysis.
Resumo:
Self-adaptive systems have the capability to autonomously modify their behavior at run-time in response to changes in their environment. Self-adaptation is particularly necessary for applications that must run continuously, even under adverse conditions and changing requirements; sample domains include automotive systems, telecommunications, and environmental monitoring systems. While a few techniques have been developed to support the monitoring and analysis of requirements for adaptive systems, limited attention has been paid to the actual creation and specification of requirements of self-adaptive systems. As a result, self-adaptivity is often constructed in an ad-hoc manner. In order to support the rigorous specification of adaptive systems requirements, this paper introduces RELAX, a new requirements language for self-adaptive systems that explicitly addresses uncertainty inherent in adaptive systems. We present the formal semantics for RELAX in terms of fuzzy logic, thus enabling a rigorous treatment of requirements that include uncertainty. RELAX enables developers to identify uncertainty in the requirements, thereby facilitating the design of systems that are, by definition, more flexible and amenable to adaptation in a systematic fashion. We illustrate the use of RELAX on smart home applications, including an adaptive assisted living system.
Resumo:
Modelling architectural information is particularly important because of the acknowledged crucial role of software architecture in raising the level of abstraction during development. In the MDE area, the level of abstraction of models has frequently been related to low-level design concepts. However, model-driven techniques can be further exploited to model software artefacts that take into account the architecture of the system and its changes according to variations of the environment. In this paper, we propose model-driven techniques and dynamic variability as concepts useful for modelling the dynamic fluctuation of the environment and its impact on the architecture. Using the mappings from the models to implementation, generative techniques allow the (semi) automatic generation of artefacts making the process more efficient and promoting software reuse. The automatic generation of configurations and reconfigurations from models provides the basis for safer execution. The architectural perspective offered by the models shift focus away from implementation details to the whole view of the system and its runtime change promoting high-level analysis. © 2009 Springer Berlin Heidelberg.
Resumo:
Self-adaptive systems have the capability to autonomously modify their behaviour at run-time in response to changes in their environment. Self-adaptation is particularly necessary for applications that must run continuously, even under adverse conditions and changing requirements; sample domains include automotive systems, telecommunications, and environmental monitoring systems. While a few techniques have been developed to support the monitoring and analysis of requirements for adaptive systems, limited attention has been paid to the actual creation and specification of requirements of self-adaptive systems. As a result, self-adaptivity is often constructed in an ad-hoc manner. In this paper, we argue that a more rigorous treatment of requirements explicitly relating to self-adaptivity is needed and that, in particular, requirements languages for self-adaptive systems should include explicit constructs for specifying and dealing with the uncertainty inherent in self-adaptive systems. We present RELAX, a new requirements language for selfadaptive systems and illustrate it using examples from the smart home domain. © 2009 IEEE.
Resumo:
This paper presents the design and results of a task-based user study, based on Information Foraging Theory, on a novel user interaction framework - uInteract - for content-based image retrieval (CBIR). The framework includes a four-factor user interaction model and an interactive interface. The user study involves three focused evaluations, 12 simulated real life search tasks with different complexity levels, 12 comparative systems and 50 subjects. Information Foraging Theory is applied to the user study design and the quantitative data analysis. The systematic findings have not only shown how effective and easy to use the uInteract framework is, but also illustrate the value of Information Foraging Theory for interpreting user interaction with CBIR. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
Dedicated short-range communications (DSRC) are a promising vehicle communication technique for collaborative road safety applications (CSA). However, road safety applications require highly reliable and timely wireless communications, which present big challenges to DSRC based vehicle networks on effective and robust quality of services (QoS) provisioning due to the random channel access method applied in the DSRC technique. In this paper we examine the QoS control problem for CSA in the DSRC based vehicle networks and presented an overview of the research work towards the QoS control problem. After an analysis of the system application requirements and the DSRC vehicle network features, we propose a framework for cooperative and adaptive QoS control, which is believed to be a key for the success of DSRC on supporting effective collaborative road safety applications. A core design in the proposed QoS control framework is that network feedback and cross-layer design are employed to collaboratively achieve targeted QoS. A design example of cooperative and adaptive rate control scheme is implemented and evaluated, with objective of illustrating the key ideas in the framework. Simulation results demonstrate the effectiveness of proposed rate control schemes in providing highly available and reliable channel for emergency safety messages. © 2013 Wenyang Guan et al.
Resumo:
The behaviour of self adaptive systems can be emergent, which means that the system’s behaviour may be seen as unexpected by its customers and its developers. Therefore, a self-adaptive system needs to garner confidence in its customers and it also needs to resolve any surprise on the part of the developer during testing and maintenance. We believe that these two functions can only be achieved if a self-adaptive system is also capable of self-explanation. We argue a self-adaptive system’s behaviour needs to be explained in terms of satisfaction of its requirements. Since self-adaptive system requirements may themselves be emergent, we propose the use of goal-based requirements models at runtime to offer self-explanation of how a system is meeting its requirements. We demonstrate the analysis of run-time requirements models to yield a self-explanation codified in a domain specific language, and discuss possible future work.
Resumo:
To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.
Resumo:
We introduce a novel algorithm for medial surfaces extraction that is based on the density-corrected Hamiltonian analysis. The approach extracts the skeleton directly from a triangulated mesh and adopts an adaptive octree-based approach in which only skeletal voxels are refined to a lower level of the hierarchy, resulting in robust and accurate skeletons at extremely high resolution. The quality of the extracted medial surfaces is confirmed by an extensive set of experiments. © 2012 IEEE.
Resumo:
Principal component analysis (PCA) is well recognized in dimensionality reduction, and kernel PCA (KPCA) has also been proposed in statistical data analysis. However, KPCA fails to detect the nonlinear structure of data well when outliers exist. To reduce this problem, this paper presents a novel algorithm, named iterative robust KPCA (IRKPCA). IRKPCA works well in dealing with outliers, and can be carried out in an iterative manner, which makes it suitable to process incremental input data. As in the traditional robust PCA (RPCA), a binary field is employed for characterizing the outlier process, and the optimization problem is formulated as maximizing marginal distribution of a Gibbs distribution. In this paper, this optimization problem is solved by stochastic gradient descent techniques. In IRKPCA, the outlier process is in a high-dimensional feature space, and therefore kernel trick is used. IRKPCA can be regarded as a kernelized version of RPCA and a robust form of kernel Hebbian algorithm. Experimental results on synthetic data demonstrate the effectiveness of IRKPCA. © 2010 Taylor & Francis.