9 resultados para Acoustic Component Detection

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper, addresses the problem of novelty detection in the case that the observed data is a mixture of a known 'background' process contaminated with an unknown other process, which generates the outliers, or novel observations. The framework we describe here is quite general, employing univariate classification with incomplete information, based on knowledge of the distribution (the 'probability density function', 'pdf') of the data generated by the 'background' process. The relative proportion of this 'background' component (the 'prior' 'background' 'probability), the 'pdf' and the 'prior' probabilities of all other components are all assumed unknown. The main contribution is a new classification scheme that identifies the maximum proportion of observed data following the known 'background' distribution. The method exploits the Kolmogorov-Smirnov test to estimate the proportions, and afterwards data are Bayes optimally separated. Results, demonstrated with synthetic data, show that this approach can produce more reliable results than a standard novelty detection scheme. The classification algorithm is then applied to the problem of identifying outliers in the SIC2004 data set, in order to detect the radioactive release simulated in the 'oker' data set. We propose this method as a reliable means of novelty detection in the emergency situation which can also be used to identify outliers prior to the application of a more general automatic mapping algorithm. © Springer-Verlag 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although reading ability has been related to the processing of simple pitch features such as isolated transitions or continuous modulation spoken language also contains complex patterns of pitch changes that are important for establishing stress location and for segmenting the speech stream. These aspects of spoken language processing depend critically on pitch pattern (global structure) rather than on absolute pitch values (local structure). Here we show that the detection of global structure, and not local structure, is predictive of performance on measures of phonological skill and reading ability, which supports a critical importance of pitch contour processing in the acquisition of literacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis considers two basic aspects of impact damage in composite materials, namely damage severity discrimination and impact damage location by using Acoustic Emissions (AE) and Artificial Neural Networks (ANNs). The experimental work embodies a study of such factors as the application of AE as Non-destructive Damage Testing (NDT), and the evaluation of ANNs modelling. ANNs, however, played an important role in modelling implementation. In the first aspect of the study, different impact energies were used to produce different level of damage in two composite materials (T300/914 and T800/5245). The impacts were detected by their acoustic emissions (AE). The AE waveform signals were analysed and modelled using a Back Propagation (BP) neural network model. The Mean Square Error (MSE) from the output was then used as a damage indicator in the damage severity discrimination study. To evaluate the ANN model, a comparison was made of the correlation coefficients of different parameters, such as MSE, AE energy, AE counts, etc. MSE produced an outstanding result based on the best performance of correlation. In the second aspect, a new artificial neural network model was developed to provide impact damage location on a quasi-isotropic composite panel. It was successfully trained to locate impact sites by correlating the relationship between arriving time differences of AE signals at transducers located on the panel and the impact site coordinates. The performance of the ANN model, which was evaluated by calculating the distance deviation between model output and real location coordinates, supports the application of ANN as an impact damage location identifier. In the study, the accuracy of location prediction decreased when approaching the central area of the panel. Further investigation indicated that this is due to the small arrival time differences, which defect the performance of ANN prediction. This research suggested increasing the number of processing neurons in the ANNs as a practical solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis presents new methodology and algorithms that can be used to analyse and measure the hand tremor and fatigue of surgeons while performing surgery. This will assist them in deriving useful information about their fatigue levels, and make them aware of the changes in their tool point accuracies. This thesis proposes that muscular changes of surgeons, which occur through a day of operating, can be monitored using Electromyography (EMG) signals. The multi-channel EMG signals are measured at different muscles in the upper arm of surgeons. The dependence of EMG signals has been examined to test the hypothesis that EMG signals are coupled with and dependent on each other. The results demonstrated that EMG signals collected from different channels while mimicking an operating posture are independent. Consequently, single channel fatigue analysis has been performed. In measuring hand tremor, a new method for determining the maximum tremor amplitude using Principal Component Analysis (PCA) and a new technique to detrend acceleration signals using Empirical Mode Decomposition algorithm were introduced. This tremor determination method is more representative for surgeons and it is suggested as an alternative fatigue measure. This was combined with the complexity analysis method, and applied to surgically captured data to determine if operating has an effect on a surgeon’s fatigue and tremor levels. It was found that surgical tremor and fatigue are developed throughout a day of operating and that this could be determined based solely on their initial values. Finally, several Nonlinear AutoRegressive with eXogenous inputs (NARX) neural networks were evaluated. The results suggest that it is possible to monitor surgeon tremor variations during surgery from their EMG fatigue measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developmental dyslexia is associated with deficits in the processing of basic auditory stimuli. Yet it is unclear how these sensory impairments might contribute to poor reading skills. This study better characterizes the relationship between phonological decoding skills, the lack of which is generally accepted to comprise the core deficit in reading disabilities, and auditory sensitivity to amplitude modulation (AM) and frequency modulation (FM). Thirty-eight adult subjects, 17 of whom had a history of developmental dyslexia, completed a battery, of psychophysical measures of sensitivity to FM and AM at different modulation rates, along with a measure of pseudoword reading accuracy and standardized assessments of literacy and cognitive skills. The subjects with a history of dyslexia were significantly less sensitive than controls to 2-Hz FM and 20-Hz AM only. The absence of a significant group difference for 2-Hz AM shows that the dyslexics do not have a general deficit in detecting all slow modulations. Thresholds for detecting 2-Hz and 240-Hz FM and 20-Hz AM correlated significantly with pseudoword reading accuracy. After accounting for various cognitive skills, however, multiple regression analyses showed that detection thresholds for both 2-Hz FM and 20-Hz AM were significant and independent predictors of pseudoword reading ability in the entire sample. Thresholds for 2-Hz AM and 240-Hz FM did not explain significant additional variance in pseudoword reading skill, it is therefore possible that certain components of auditory processing of modulations are related to phonological decoding skills, whereas others are not.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual field assessment is a core component of glaucoma diagnosis and monitoring, and the Standard Automated Perimetry (SAP) test is considered up until this moment, the gold standard of visual field assessment. Although SAP is a subjective assessment and has many pitfalls, it is being constantly used in the diagnosis of visual field loss in glaucoma. Multifocal visual evoked potential (mfVEP) is a newly introduced method used for visual field assessment objectively. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard SAP visual field assessment, and others were not very informative and needed more adjustment and research work. In this study, we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. OBJECTIVES: The purpose of this study is to examine the effectiveness of a new analysis method in the Multi-Focal Visual Evoked Potential (mfVEP) when it is used for the objective assessment of the visual field in glaucoma patients, compared to the gold standard technique. METHODS: 3 groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey visual field HFA test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the Hemifield Sector Analysis HSA protocol. Analysis of the HFA was done using the standard grading system. RESULTS: Analysis of mfVEP results showed that there was a statistically significant difference between the 3 groups in the mean signal to noise ratio SNR (ANOVA p<0.001 with a 95% CI). The difference between superior and inferior hemispheres in all subjects were all statistically significant in the glaucoma patient group 11/11 sectors (t-test p<0.001), partially significant 5/11 (t-test p<0.01) and no statistical difference between most sectors in normal group (only 1/11 was significant) (t-test p<0.9). sensitivity and specificity of the HAS protocol in detecting glaucoma was 97% and 86% respectively, while for glaucoma suspect were 89% and 79%. DISCUSSION: The results showed that the new analysis protocol was able to confirm already existing field defects detected by standard HFA, was able to differentiate between the 3 study groups with a clear distinction between normal and patients with suspected glaucoma; however the distinction between normal and glaucoma patients was especially clear and significant. CONCLUSION: The new HSA protocol used in the mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patient. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opto-Acoustic Endoscopy (OAE) requires sensors with a high sensitivity and small physical dimensions in order to facilitate integration into an endoscope of less than 1mm in diameter. We present fibre Bragg grating (FBG) and Fabry- Perot intrinsic fibre sensors for ultrasound detection. We present a structure profile characterisation setup to analyse tune the fibre sensors in preparation for ultrasonic detection. We evaluate the suitability of the different structures and grating parameters for ultrasonic sensing. By analysing the prepared gratings, we enable the optimisation of the profile and a simplification of the detection regime for an optimal interferometric OAE configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliability of power converters is of crucial importance in switched reluctance motor drives used for safety-critical applications. Open-circuit faults in power converters will cause the motor to run in unbalanced states, and if left untreated, they will lead to damage to the motor and power modules, and even cause a catastrophic failure of the whole drive system. This study is focused on using a single current sensor to detect open-circuit faults accurately. An asymmetrical half-bridge converter is considered in this study and the faults of single-phase open and two-phase open are analysed. Three different bus positions are defined. On the basis of a fast Fourier transform algorithm with Blackman window interpolation, the bus current spectrums before and after open-circuit faults are analysed in details. Their fault characteristics are extracted accurately by the normalisations of the phase fundamental frequency component and double phase fundamental frequency component, and the fault characteristics of the three bus detection schemes are also compared. The open-circuit faults can be located by finding the relationship between the bus current and rotor position. The effectiveness of the proposed diagnosis method is validated by the simulation results and experimental tests.