9 resultados para Acetyl resin
em Aston University Research Archive
Resumo:
A series of antioxidants was used to explore the cytotoxicity of one particularly toxic antimycobacterial 2-pyridylcarboxamidrazone anti-tuberculosis agent against human mononuclear leucocytes (MNL), in comparison with isoniazid (INH) to aid future compound design. INH caused a significant reduction of nearly 40% in cell recovery compared with control (P < 0.0001), although the co-incubation with either glutathione (GSH, 1 mM) or (NAC, 1 mM) showed abolition of INH toxicity. In contrast, the addition of GSH or NAC 1 h after INH failed to protect the cells from INH toxicity (P < 0.0001). The 2-pyridyl-carboxamidrazone 'Compound 1' caused a 50% reduction in cell recovery compared with control (P < 0.001), although this was abolished by the presence of either GSH or NAC. A 1 h post incubation with either NAC or GSH after Compound 1 addition failed to protect the cells from toxicity (P < 0.001). Co-administration of lipoic acid (LA) abolished Compound 1-mediated toxicity, although again, this effect did not occur after LA addition 1 h post incubation with Compound 1 (P < 0.001). However, co-administration of dihydrolipoic acid (DHLA) prevented Compound 1-mediated cell death when incubated with the compound and also after 1 h of Compound 1 alone. Pre-treatment with GSH, then removal of the antioxidant resulted in abolition of Compound 1 toxicity (vehicle control, 63.6 ± 16.7 versus Compound 1 alone 26.1 ± 13.6% versus GSH pre-treatment, 65.7 ± 7.3%). In a cell-free incubation, NMR analysis revealed that GSH does not react with Compound 1, indicating that this agent is not likely to directly deplete membrane thiols. Compound 1's MNL toxicity is more likely to be linked with changes in cell membrane conformation, which may induce consequent thiol depletion that is reversible by exogenous thiols. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The main objective of this work was to examlne the various stages of the production of industrial laminates based on phenol-formaldehyde resins, with a view of suggesting ways of improving the process economics and/or the physical properties of the final product. Aspects of impregnation, drying, and lamination were investigated. The resins used in all experiments were ammonia-catalysed. Work was concentrated on the lamination stage since this is a labour intensive activity. Paper-phenolic lay-ups were characterised in terms of the temperatures experienced during cure, and a shorter cure-cycle is proposed, utilising the exothermic heat produced during pressing of 25.5 mm thick lay-ups. Significant savings in production costs and improvements in some of the physical properties have been achieved. In particular, water absorption has been reduced by 43-61%. Work on the drying stage has shown that rapid heating of the wet impregnated substrate results in resin solids losses. Drying at lower temperatures by reducing the driving force leads to more resin (up to 6.5%) being retained by the prepregs and therefore more effective use of an expensive raw material. The impregnation work has indicated that residence times above 6 seconds in the varnish bath enhance the insulation resistance of the final product, possibly due to improved resin distribution and reduction in water absorption. In addition, a novel process which involves production of laminates by in situ polymerisation of the phenolic resin on the substrate has been examined. Such a process would eliminate the solvent recovery plant - a necessary stage in current industrial processes. In situ polymerisation has been shown to be chemically feasible.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Objective: To review the literature relating to the use of acetyl cholinesterase inhibitors in Parkinson's disease dementia (PDD). Method: MEDLINE (1966 – December 2004), PsychINFO (1972 – December 2004), EMBASE (1980 – December 2004), CINHAL (1982 – December 2004), and the Cochrane Collaboration were searched in December 2004. Results: Three controlled trials and seven open studies were identified. Efficacy was assessed in three key domains: cognitive, neuropsychiatric and parkinsonian symptoms. Conclusion: Cholinesterase inhibitors have a moderate effect against cognitive symptoms. There is no clear evidence of a noticeable clinical effect against neuropsychiatric symptoms. Tolerability including exacerbation of motor symptoms – in particular tremor – may limit the utility of cholinesterase inhibitors.
Resumo:
Background:Memantine and cholinesterase inhibitors (ChEI) have distinct pharmacological actions, and interest in the use of combination therapy for Alzheimer's disease (AD) is increasing. Objective: To assess the available data on the use of memantine–ChEI combination and to develop evidence-based recommendations.Method: A systematic literature review with detailed discussion of the current evidence base. Results: Available data are limited: five studies of which two were randomized, double-blind, placebo-controlled trials. One study indicated that memantine–ChEI combination is not significantly more effective than placebo–ChEI in mild to moderate AD, but data were published in abstract and poster form only. A second study indicated that the memantine–ChEI combination is significantly more effective than placebo–ChEI in moderate to severe AD. The calculated effect sizes of 0.36 on cognition and 0.12 on function, which were the primary outcomes, were small, indicating a clinically minimal effect on cognition and no effect on function. No data are available on whether combination treatment is more effective than memantine monotherapy. Conclusion: The available data do not justify the use of combination therapy. Future studies should include three arms (memantine–placebo, placebo–ChEI, and memantine–ChEI), be of an adequate size and duration, and use pragmatic measures. Clinicians should have full access to data from any future trials.
Resumo:
Light curable dimethacrylate resin composites undergo free radical photopolymerisation in response to blue light (wavelength 450-500 nm) and may offer superior handling and setting characteristics for novel hard tissue repair materials. The current investigation aims to determine the optimum formulation of bisphenol-A glycidyl methacrylate and triethyleneglycoldimethacrylate (bisGMA/TEGDMA) or urethane dimethacrylate (UDMA)/TEGDMA resin mixtures and the effect of Bioglass incorporation on the rate of polymerisation (RP), degree of conversion (DC) and flexural strength (FS) of light-curable filled resin composites (FRCs). Experimental photoactive resins containing a range of bisGMA, UDMA and TEGDMA ratios and/or filled with non-silanised irregular or spherical 45S5-Bioglass (50 μm; 5-40 wt%) and/or silanised silicate glass filler particulates (0.7 μm; 50-70 wt%) were tested. RP and DC were analysed in real-time using nearinfrared spectroscopy. FS of resins and FRCs were determined using three-point flexural strength tests. UDMA/TEGDMA resins exhibited increased DC compared with bisGMA/TEGDMA resins (p<0.05). The addition of spherical particles of Bioglass had a detrimental effect on the FS (p>0.05), whereas they increased DC of UDMA/TEGDMA resins (p<0.05). Addition of irregular shaped Bioglass particles increased the FS of UDMA/TEGDMA resins up to 20 wt% Bioglass (p<0.05). The flexibility and strength conferred by the urethane group in UDMA may result in enhanced physical and mechanical properties compared with conventional resins containing bulky (bisGMA) molecules. Addition of 45S5-Bioglass with specific filler content, size and morphology resulted in enhanced mechanical and physical properties of UDMA/TEGDMA composites. © (2014) Trans Tech Publications, Switzerland.
Resumo:
α-Lipoic acid, dihydrolipoic acid (DHLA), N-acetyl cysteine and ascorbate were compared with methylene blue for their ability to attenuate and/or reduce methaemoglobin formation induced by sodium nitrite, 4-aminophenol and dapsone hydroxylamine in human erythrocytes. Neither α-lipoic acid, DHLA, N-acetyl cysteine nor ascorbate had any significant effects on methaemoglobin formed by nitrite, either from pre-treatment, simultaneous addition or post 30 min addition of the agents up to the 60 min time point, although N-acetyl cysteine did reduce methaemoglobin formation at 120 min (P<0.05). In all three treatment groups at 30, 60 and 120 min, there were no significant effects mediated by DHLA or N-acetyl cysteine on 4-aminophenol (1 mM)-mediated haemoglobin oxidation. Ascorbate caused marked significant reductions in 4-aminophenol methaemoglobin in all treatment groups at 30-120 min except at 30 min in the simultaneous addition group (P<0.0001). Neither α-lipoic acid, nor N-acetyl cysteine showed any effects on hydroxylamine-mediated methaemoglobin formation at 30 and 60 in all treatment groups. In contrast, DHLA significantly reduced hydroxylamine-mediated methaemoglobin formation at all three time points after pre-incubation and simultaneous addition (P<0.001), while ascorbate was ineffective. Compared with methylene blue, which was effective in reducing methaemoglobin formation by all three toxins (P<0.01), ascorbate was only highly effective against 4-aminophenol mediated methaemoglobin, whilst the DHLA-mediated attenuation of dapsone hydroxylamine-mediated methaemoglobin formation indicates a possible clinical application in high-dose dapsone therapy. © 2003 Elsevier B.V. All rights reserved.