2 resultados para Accessible
em Aston University Research Archive
Resumo:
T cell activation is the final step in a complex pathway through which pathogen-derived peptide fragments can elicit an immune response. For it to occur, peptides must form stable complexes with Major Histocompatibility Complex (MHC) molecules and be presented on the cell surface. Computational predictors of MHC binding are often used within in silico vaccine design pathways. We have previously shown that, paradoxically, most bacterial proteins known experimentally to elicit an immune response in disease models are depleted in peptides predicted to bind to human MHC alleles. The results presented here, derived using software proven through benchmarking to be the most accurate currently available, show that vaccine antigens contain fewer predicted MHC-binding peptides than control bacterial proteins from almost all subcellular locations with the exception of cell wall and some cytoplasmic proteins. This effect is too large to be explained from the undoubted lack of precision of the software or from the amino acid composition of the antigens. Instead, we propose that pathogens have evolved under the influence of the host immune system so that surface proteins are depleted in potential MHC-binding peptides, and suggest that identification of a protein likely to contain a single immuno-dominant epitope is likely to be a productive strategy for vaccine design.
Resumo:
The Protein pKa Database (PPD) v1.0 provides a compendium of protein residue-specific ionization equilibria (pKa values), as collated from the primary literature, in the form of a web-accessible postgreSQL relational database. Ionizable residues play key roles in the molecular mechanisms that underlie many biological phenomena, including protein folding and enzyme catalysis. The PPD serves as a general protein pKa archive and as a source of data that allows for the development and improvement of pKa prediction systems. The database is accessed through an HTML interface, which offers two fast, efficient search methods: an amino acid-based query and a Basic Local Alignment Search Tool search. Entries also give details of experimental techniques and links to other key databases, such as National Center for Biotechnology Information and the Protein Data Bank, providing the user with considerable background information.