16 resultados para Acceleration, Centre of mass, Gait, Kinematic, Running, Symmetry
em Aston University Research Archive
Resumo:
DDevelopmental dyslexia is a reading disorder associated with impaired postural control. However, such deficits are also found in attention deficit hyperactivity disorder (ADHD), which is present in a substantial subset of dyslexia diagnoses. Very few studies of balance in dyslexia have assessed ADHD symptoms, thereby motivating the hypothesis that such measures can account for the group differences observed. In this study, we assessed adults with dyslexia and similarly aged controls on a battery of cognitive, literacy and attention measures, alongside tasks of postural stability. Displacements of centre of mass to perturbations of posture were measured in four experimental conditions using digital optical motion capture. The largest group differences were obtained in conditions where cues to the support surface were reduced. Between-group differences in postural sway and in sway variability were largely accounted for by co-varying hyperactivity and inattention ratings, however. These results therefore suggest that postural instability in dyslexia is more strongly associated with symptoms of ADHD than to those specific to reading impairment.
Resumo:
Free Paper Sessions Design. Retrospective analysis. Purpose. To assess the prevalence of center-involving diabetic macular oedema (CIDMO) and risk factors. Methods. Retrospective review of patients who were screen positive for maculopathy (M1) during 2010 in East and North Birmingham. The CIDMO was diagnosed by qualitative identification of definite foveal oedema on optical coherence tomography (OCT). Results. Out of a total of 15,234 patients screened, 1194 (7.8%) were screen positive for M1 (64% bilateral). A total of 137 (11.5% of M1s) were diagnosed with macular oedema after clinical assessment. The OCT results were available for 123/137; 69 (56.1%) of these had CI-DMO (30 bilateral) which is 0.5% of total screens and 5.8% of those screen positive for M1. In those with CIDMO 60.9% were male and 63.8% Caucasian; 90% had type 2 diabetes and mean diabetes duration was 20 years (SD 9.7, range 2-48). Mean HbA1c was 8.34%±1.69, with 25% having an HbA1c =9%. Furthermore, 62% were on insulin, 67% were on antihypertensive therapy, and 64% were on a cholesterol-lowering drug. A total of 37.7% had an eGFR between 30% and 60% and 5.8% had eGFR <30. The only significant difference between the CIDMO and non-CIDMO group was mean age (67.83±12.26 vs 59.69±15.82; p=0.002). A total of 65.2% of those with CIDMO also had proliferative or preproliferative retinopathy in the worst eye and 68.1% had subsequently been treated with macular laser at the time of data review. Conclusions. The results show that the prevalence of CIDMO in our diabetic population was 0.5%. A significant proportion of macula oedema patients were found to have type 2 diabetes with long disease duration, suboptimal glycemic and hypertensive control, and low eGFR. The data support that medical and diabetic review of CIDMO patients is warranted particularly in the substantial number with poor glycemic control and if intravitreal therapies are indicated.
Resumo:
In this paper a mathematical model based on mass transfer in plant tissues is developed. The model takes into account the diffusion and convection of each constituent within the tissue. The driving force for the convection is assumed to be the gradient of hydrostatic pressure. The mass balance equation for the transport of each constituent is established separately for intracellular and extracellular volumes but taking into account the mass exchange across the cell membrane between the intracellular and extracellular volumes. The mass transfer results in not only the change of intracellular and extracellular volumes but also the shrinkage of whole tissue. The model allows us to quantitatively simulate the time evolution of intracellular and extracellular volumes, which was observed in histological sections under the microscope. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Degeneration of the older parts of foliose lichen thalli often lead to the formation of a space or 'window' in the centre of the colonies. The percentage of thalli of different size which exhibited 'windows' was studied in twenty saxicolous lichen populations in south Gwynedd, Wales. The proportion of thalli with 'windows' increased with thallus size. The size class at which 50% and 100% of thalli exhibited 'windows' varied between populations. Differences between populations were not correlated with distance from the sea, aspect, slope or porosity of the substrate or the total number of lichen species present. However, a higher percentage of smaller thalli had 'windows' on rock surfaces with a greater lichen cover. There were no significant differences in the levels of Ca, Mg, Cu or Zn in large (>4 cm) and small (<2 cm) Parmelia conspersa (Ehrh. ex Ach.) Ach. thalli or in the centres and marginal lobes of these thalli. The concentration of ribitol, arabitol and mannitol was significantly reduced in the centre of large thalli compared with the margin of large thalli and the centre of small thalli. However, carbohydrate levels were similar in the centre of large thalli and the margin of small thalli. The data suggest that loss of the thallus centre is a degenerative process related to thallus size. In the field, the formation of 'windows' may be related to the intensity of competition on a substrate. Central degeneration was not associated with a deficiency or an accumulation of Ca, Mg, Cu and Zn in the thallus centre. However, degeneration may be associated with a reduction in carbohydrates in the centre compared with the marginal lobes.
Resumo:
Compared to packings trays are more cost effective column internals because they create a large interfacial area for mass transfer by the interaction of the vapour on the liquid. The tray supports a mass of froth or spray which on most trays (including the most widely used sieve trays) is not in any way controlled. The two important results of the gas/liquid interaction are the tray efficiency and the tray throughput or capacity. After many years of practical experience, both may be predicted by empirical correlations, despite the lack of understanding. It is known that the tray efficiency is in part determined by the liquid flow pattern and the throughput by the liquid froth height which in turn depends on the liquid hold-up and vapour velocity. This thesis describes experimental work on sieve trays in an air-water simulator, 2.44 m in diameter. The liquid flow pattern, for flow rates similar to those used in commercial scale distillation, was observed experimentally by direct observation; by water-cooling, to simulate mass transfer; use of potassium permanganate dye to observe areas of longer residence time; and by height of clear liquid measurements across the tray and in the downcomer using manometers. This work presents experiments designed to evaluate flow control devices proposed to improve the gas liquid interaction and hence improve the tray efficiency and throughput. These are (a) the use of intermediate weirs to redirect liquid to the sides of the tray so as to remove slow moving/stagnant liquid and (b) the use of vapour-directing slots designed to use the vapour to cause liquid to be directed towards the outlet weir thus reducing the liquid hold-up at a given rate i.e. increased throughput. This method also has the advantage of removing slow moving/stagnant liquid. In the experiments using intermediate weirs, which were placed in the centre of the tray. it was found that in general the effect of an intermediate weir depends on the depth of liquid downstream of the weir. If the weir is deeper than the downstream depth it will cause the upstream liquid to be deeper than the downstream liquid. If the weir is not as deep as deep as the downstream depth it may have little or no effect on the upstream depth. An intermediate weir placed at an angle to the direction of flow of liquid increases the liquid towards the sides of the tray without causing an increase in liquid hold-up/ froth height. The maximum proportion of liquid caused to flow sideways by the weir is between 5% and 10%. Experimental work using vapour-directing slots on a rectangular sieve tray has shown that the horizontal momentum that is imparted to the liquid is dependent upon the size of the slot. If too much momentum is transferred to the liquid it causes hydraulic jumps to occur at the mouth of the slot coupled with liquid being entrained, The use of slots also helps to eliminate the hydraulic gradient across sieve trays and provides a more uniform froth height on the tray. By comparing the results obtained of the tray and point efficiencies, it is shown that a slotted tray reduces both values by approximately 10%. This reduction is due to the fact that with a slotted tray the liquid has a reduced residence time Ion the tray coupled also with the fact that large size bubbles are passing through the slots. The effectiveness of using vapour-directing slots on a full circular tray was investigated by using dye to completely colour the biphase. The removal of the dye by clear liquid entering the tray was monitored using an overhead camera. Results obtained show that the slots are successful in their aim of reducing slow moving liquid from the sides of the tray, The net effect of this is an increase in tray efficiency. Measurements of slot vapour-velocity found it to be approximately equal to the hole velocity.
Resumo:
The thesis describes experimental work on sieve trays in an air-water simulator, 2.44 m in diameter. The liquid flow pattern, for flowrates similar to those used in commercial scale distillation, was observed experimentally by water cooling experiments, in which the temperature of the water is measured at over 100 positions over the tray area. The water is cooled by the rising air which is forced through the tray. A heat and mass transfer analogy is drawn whereby the water temperature is mapped to liquid concentration in mass transfer, and the water temperature profiles reveal how liquid channelling may reduce the tray efficiency. The first experiment was to observe the flow of water only over an unperforated tray. With the exception of very low weir loads, the flow separated at the ends of the inlet downcomer. This caused liquid to flow straight across the tray between the downcomers and large circulating regions to be formed in the side regions of the tray. The effect of the air crossflow on the flow pattern was then observed on a sieve tray of 10% free area with 1 mm diameter holes (such as is used in cryogenic distillation). The flow patterns developed on the tray were similar to those produced with water only on the unperforated tray, but at low weir loads the air crossflow prevented separation of the water flow and the associated circulating regions. At higher weir loads, liquid channelling down the centre of the tray and circulation in the side regions occurred. The percentage of the tray occupied by circulating liquid depended upon the velocity of the liquid entering the tray, which was set by the weir load and size of the gap under the inlet downcomer. The water cooling experiments showed that the temperature of the water in a circulating region is much lower than in other parts of the tray, indicating that the driving force for heat transfer is reduced. In a column section where trays (and circulating areas) are mounted on top of each other, the circulating regions will cause air (or vapour) passing through them to have a reduced change in temperature or concentration leading a loss in tray efficiency.
Resumo:
Purpose: The use of PHMB as a disinfectant in contact lens multipurpose solutions has been at the centre of much debate in recent times, particularly in relation to the issue of solution induced corneal staining. Clinical studies have been carried out which suggest different effects with individual contact lens materials used in combination with specific PHMB containing care regimes. There does not appear to be, however, a reliable analytical technique that would detect and quantify with any degree of accuracy the specific levels of PHMB that are taken up and released from individual solutions by the various contact lens materials. Methods: PHMB is a mixture of positively charged polymer units of varying molecular weight that has maximum absorbance wavelength of 236 nm. On the basis of these properties a range of assays including capillary electrophoresis, HPLC, a nickelnioxime colorimetric technique, mass spectrophotometry, UV spectroscopy and ion chromatography were assessed paying particular attention to each of their constraints and detection levels. Particular interest was focused on the relative advantage of contactless conductivity compared to UV and mass spectrometry detection in capillary electrophoresis (CE). This study provides an overview of the comparative performance of these techniques. Results: The UV absorbance of PHMB solutions, ranging from 0.0625 to 50 ppm was measured at 236 nm. Within this range the calibration curve appears to be linear however, absorption values below 1 ppm (0.0001%) were extremely difficult to reproduce. The concentration of PHMB in solutions is in the range of 0.0002–0.00005% and our investigations suggest that levels of PHMB below 0.0001% (levels encountered in uptake and release studies) can not be accurately estimated, in particular when analysing complex lens care solutions which can contain competitively absorbing, and thus interfering, species in the solution. The use of separative methodologies, such as CE using UV detection alone is similarly limited. Alternative techniques including contactless conductivity detection offer greater discrimination in complex solutions together with the opportunity for dual channel detection. Preliminary results achieved by TraceDec1 contactless conductivity detection, (Gain 150%, Offset 150) in conjunction with the Agilent capillary electrophoresis system using a bare fused silica capillary (extended light path, 50 mid, total length 64.5 cm, effective length 56 cm) and a cationic buffer at pH 3.2, exhibit great potential with reproducible PHMB split peaks. Conclusions: PHMB-based solutions are commonly associated with the potential to invoke corneal staining in combination with certain contact lens materials. However this terminology ‘PHMBbased solution’ is used primarily because PHMB itself has yet to be adequately implicated as the causative agent of the staining and compromised corneal cell integrity. The lack of well characterised adequately sensitive assays, coupled with the range of additional components that characterise individual care solutions pose a major barrier to the investigation of PHMB interactions in the lenswearing eye.
Resumo:
This work is concerned with the nature of liquid flow across industrial sieve trays operating in the spray, mixed, and the emulsified flow regimes. In order to overcome the practical difficulties of removing many samples from a commercial tray, the mass transfer process was investigated in an air water simulator column by heat transfer analogy. The temperature of the warm water was measured by many thermocouples as the water flowed across the single pass 1.2 m diameter sieve tray. The thermocouples were linked to a mini computer for the storage of the data. The temperature data were then transferred to a main frame computer to generate temperature profiles - analogous to concentration profiles. A comprehensive study of the existing tray efficiency models was carried out using computerised numerical solutions. The calculated results were compared with experimental results published by the Fractionation Research Incorporation (FRl) and the existing models did not show any agreement with the experimental results. Only the Porter and Lockett model showed a reasonable agreement with the experimental results for cenain tray efficiency values. A rectangular active section tray was constructed and tested to establish the channelling effect and the result of its effect on circular tray designs. The developed flow patterns showed predominantly flat profiles and some indication of significant liquid flow through the central region of the tray. This comfirms that the rectangular tray configuration might not be a satisfactory solution for liquid maldistribution on sieve trays. For a typical industrial tray the flow of liquid as it crosses the tray from the inlet to the outlet weir could be affected by the mixing of liquid by the eddy, momentum and the weir shape in the axial or the transverse direction or both. Conventional U-shape profiles were developed when the operating conditions were such that the froth dispersion was in the mixed regime, with good liquid temperature distribution while in the spray regime. For the 12.5 mm hole diameter tray the constant temperature profiles were found to be in the axial direction while in the spray regime and in the transverse direction for the 4.5 mm hole tray. It was observed that the extent of the liquid stagnant zones at the sides of the tray depended on the tray hole diameter and was larger for the 4.5 mm hole tray. The liquid hold-up results show a high liquid hold-up at the areas of the tray with low liquid temperatures, this supports the doubts about the assumptions of constant point efficiency across an operating tray. Liquid flow over the outlet weir showed more liquid flow at the centre of the tray at high liquid loading with low liquid flow at both ends of the weir. The calculated results of the point and tray efficiency model showed a general increase in the calculated point and tray efficiencies with an increase in the weir loading, as the flow regime changed from the spray to the mixed regime the point and the tray efficiencies increased from approximately 30 to 80%.Through the mixed flow regime the efficiencies were found to remain fairly constant, and as the operating conditions were changed to maintain an emulsified flow regime there was a decrease in the resulting efficiencies. The results of the estimated coefficient of mixing for the small and large hole diameter trays show that the extent of liquid mixing on an operating tray generally increased with increasing capacity factor, but decreased with increasing weir loads. This demonstrates that above certain weir loads, the effect of eddy diffusion mechanism on the process of liquid mixing on an operating tray to be negligible.
Resumo:
The internationally accepted Wolfson Heat Treatment Centre Engineering Group test was used to evaluate the cooling characteristics of the most popular commercial polymer quenchants: polyalkylene glycols, polyvinylpyrrolidones and polyacrylates. Prototype solutions containing poly(ethyloxazoline) were also examined. Each class of polymer was capable of providing a wide range of cooling rates depending on the product formulation, concentration, temperature, agitation, ageing and contamination. Cooling rates for synthetic quenchants were generally intermediate between those of water and oil. Control techniques, drag-out losses and response to quenching in terms of hardness and residual stress for a plain carbon steel, were also considered. A laboratory scale method for providing a controllable level of forced convection was developed. Test reproducibility was improved by positioning the preheated Wolfson probe 25mm above the geometric centre of a 25mm diameter orifice through which the quenchant was pumped at a velocity of 0.5m/s. On examination, all polymer quenchants were found to operate by the same fundamental mechanism associated with their viscosity and ability to form an insulating polymer-rich-film. The nature of this film, which formed at the vapour/liquid interface during boiling, was dependent on the polymer's solubility characteristics. High molecular weight polymers and high concentration solutions produced thicker, more stable insulating films. Agitation produced thinner more uniform films. Higher molecular weight polymers were more susceptible to degradation, and increased cooling rates, with usage. Polyvinylpyrrolidones can be cross-linked resulting in erratic performance, whilst the anionic character of polyacrylates can lead to control problems. Volatile contaminants tend to decrease the rate of cooling and salts to increase it. Drag-out increases upon raising the molecular weight of the polymer and its solution viscosity. Kinematic viscosity measurements are more effective than refractometer readings for concentration control, although a quench test is the most satisfactory process control method.
Resumo:
Bubbling fluidized bed technology is one of the most effective mean for interaction between solid and gas flow, mainly due to its good mixing and high heat and mass transfer rate. It has been widely used at a commercial scale for drying of grains such as in pharmaceutical, fertilizers and food industries. When applied to drying of non-pours moist solid particles, the water is drawn-off driven by the difference in water concentration between the solid phase and the fluidizing gas. In most cases, the fluidizing gas or drying agent is air. Despite of the simplicity of its operation, the design of a bubbling fluidized bed dryer requires an understanding of the combined complexity in hydrodynamics and the mass transfer mechanism. On the other hand, reliable mass transfer coefficient equations are also required to satisfy the growing interest in mathematical modelling and simulation, for accurate prediction of the process kinetics. This chapter presents an overview of the various mechanisms contributing to particulate drying in a bubbling fluidized bed and the mass transfer coefficient corresponding to each mechanism. In addition, a case study on measuring the overall mass transfer coefficient is discussed. These measurements are then used for the validation of mass transfer coefficient correlations and for assessing the various assumptions used in developing these correlations.
Resumo:
Development of mass spectrometry techniques to detect protein oxidation, which contributes to signalling and inflammation, is important. Label-free approaches have the advantage of reduced sample manipulation, but are challenging in complex samples owing to undirected analysis of large data sets using statistical search engines. To identify oxidised proteins in biological samples, we previously developed a targeted approach involving precursor ion scanning for diagnostic MS3 ions from oxidised residues. Here, we tested this approach for other oxidations, and compared it with an alternative approach involving the use of extracted ion chromatograms (XICs) generated from high-resolution MSMS data using very narrow mass windows. This accurate mass XIC data methodology was effective at identifying nitrotyrosine, chlorotyrosine, and oxidative deamination of lysine, and for tyrosine oxidations highlighted more modified peptide species than precursor ion scanning or statistical database searches. Although some false positive peaks still occurred in the XICs, these could be identified by comparative assessment of the peak intensities. The method has the advantage that a number of different modifications can be analysed simultaneously in a single LC-MSMS run. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. Biological significance: The use of accurate mass extracted product ion chromatograms to detect oxidised peptides could improve the identification of oxidatively damaged proteins in inflammatory conditions. © 2013 Elsevier B.V.
Resumo:
Sucrose is used as a cryo-preservation agent on large mammalian eyes post formalin fixation and is shown to reduce freezing artefacts allowing the collection of 12-μm thick sections from these large aqueous samples. The suitability of this technique for use in MALDI imaging experiments is demonstrated by the acquisition of the first images of lipid distributions within whole sagittal porcine eye sections. © 2012 John Wiley & Sons, Ltd.