2 resultados para Abstractive summarization
em Aston University Research Archive
Resumo:
Reading scientific articles is more time-consuming than reading news because readers need to search and read many citations. This paper proposes a citation guided method for summarizing multiple scientific papers. A phenomenon we can observe is that citation sentences in one paragraph or section usually talk about a common fact, which is usually represented as a set of noun phrases co-occurring in citation texts and it is usually discussed from different aspects. We design a multi-document summarization system based on common fact detection. One challenge is that citations may not use the same terms to refer to a common fact. We thus use term association discovering algorithm to expand terms based on a large set of scientific article abstracts. Then, citations can be clustered based on common facts. The common fact is used as a salient term set to get relevant sentences from the corresponding cited articles to form a summary. Experiments show that our method outperforms three baseline methods by ROUGE metric.©2013 Elsevier B.V. All rights reserved.
Resumo:
Text summarization has been studied for over a half century, but traditional methods process texts empirically and neglect the fundamental characteristics and principles of language use and understanding. Automatic summarization is a desirable technique for processing big data. This reference summarizes previous text summarization approaches in a multi-dimensional category space, introduces a multi-dimensional methodology for research and development, unveils the basic characteristics and principles of language use and understanding, investigates some fundamental mechanisms of summarization, studies dimensions on representations, and proposes a multi-dimensional evaluation mechanism. Investigation extends to incorporating pictures into summary and to the summarization of videos, graphs and pictures, and converges to a general summarization method. Further, some basic behaviors of summarization are studied in the complex cyber-physical-social space. Finally, a creative summarization mechanism is proposed as an effort toward the creative summarization of things, which is an open process of interactions among physical objects, data, people, and systems in cyber-physical-social space through a multi-dimensional lens of semantic computing. The insights can inspire research and development of many computing areas.