5 resultados para Absorption coefficient, 300 nm
em Aston University Research Archive
Resumo:
We report on the first recording of a periodic structure of ∼150 nm pitch in a permanently moving sample of a pure fused silica using the tightly focused, 82 nJ, 267 nm, 300 fs, 1 kHz laser pulses. © 2007 IOP Publishing Ltd.
Resumo:
Very recently, using tightly-focused femtosecond near-IR pulses, periodical sub-micron structures have been recorded [1,2]. Such microfabrication utilizes the multi-photon approach, which allows the inscription inside various non-photosensitive optical materials. The combination of multi-photon excitation with the point-by-point technique offers the great potential of creating non-uniform chirped gratings by controlling the rate of femtosecond pulses or the sample translation speed.
Resumo:
We report on the first recording of a periodic structure of ~150 nm pitch in a permanently moving sample of a pure fused silica using the tightly focused, 82 nJ, 267 nm, 300 fs, 1 kHz laser pulses.
Resumo:
Very recently, using tightly-focused femtosecond near-IR pulses, periodical sub-micron structures have been recorded [1,2]. Such microfabrication utilizes the multi-photon approach, which allows the inscription inside various non-photosensitive optical materials. The combination of multi-photon excitation with the point-by-point technique offers the great potential of creating non-uniform chirped gratings by controlling the rate of femtosecond pulses or the sample translation speed.
Resumo:
We report on the first recording of a 300-nm-period structure in a permanently moving sample of a pure fused silica using the tightly-focused, 82 nJ, 267 nm, 300 fs, 1 kHz laser pulses.